Home
Class 12
MATHS
Given vecalpha=3 hat i+ hat j+2 hat ka ...

Given ` vecalpha=3 hat i+ hat j+2 hat ka n d vecbeta= hat i-2 hat j-4 hat k` are the position vectors of the points `Aa n dBdot` Then the distance of the point `- hat i+ hat j+ hat k` from the plane passing through `B` and perpendicular to `A B` is a. `5` b. `10` c. `15` d. `20`

Text Solution

Verified by Experts

The correct Answer is:
5
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|87 Videos
  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|34 Videos
  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise LEVEL-2|42 Videos
  • STRAIGHT LINES

    VMC MODULES ENGLISH|Exercise JEE Advanced Archive (State true or false: Q. 42)|1 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

If the position vectors of the point A and B are 3hat(i)+hat(j)+2hat(k) and hat(i)-2hat(j)-4hat(k) respectively. Then the eqaution of the plane through B and perpendicular to AB is

A line passes through the points whose pdotvdot are hat i+ hat j-2 hat k and hat i-3 hat j+ hat k .The position vector of a point on it at unit distance from the first point is

vec A B=3 hat i- hat j+ hat ka n d vec C D=-3 hat i+2 hat j+4 hat k are two vectors. The position vectors of the points Aa n dC are =6 hat i+7 hat j+4 hat ka n d=-9 hat j+2 hat k respectively. Find the position vector of a point P on the line A B and a point Q on the line C D such that vec P Q is perpendicular to vec A Ba n d vec C B both.

If vec a= hat i+ hat j- hat k ,\ vec b=- hat i+2 hat j+2 hat k\ a n d\ vec c=- hat i+2 hat j- hat k , then a unit vector normal to the vectors a+b\ a n d\ b-c is

Find the sum of vectors vec a= hat i-2 hat j+ hat k ,\ vec b=-2 hat i+4 hat j+5 hat k\ a n d\ vec c= hat i-6 hat j-7 hat kdot

Let vecalpha=a hat i+b hat j+c hat k , vecbeta=b hat i+c hat j+a hat ka n d vecgamma=c hat i+a hat j+b hat k are three coplanar vectors with a!=b ,a n d vec v= hat i+ hat j+ hat kdot Then v is perpendicular to vecalpha b. vecbeta c. vecgamma d. none of these

If vecalpha=3 hat i+4 hat j+5 hat k and vecbeta=2 hat i+ hat j-4 hat k , then express vecbeta in the form of vecbeta= vecbeta_1+ vecbeta_2, where vecbeta_1 is parallel to vecalpha and vecbeta_2 is perpendicular to vecalpha .

If vecalpha=3 hat i+4 hat j+5 hat k and vecbeta=2 hat i+ hat j-\ 4 hat k , then express vecbeta in the form vecbeta_1+ vecbeta_2, where vecbeta_1\ is parallel to vecalpha and vecbeta is perpendicular to vecalpha .

If vec a= hat i+ hat j+ hat k ,\ vec b=2 hat i- hat j+3 hat k\ a n d\ vec c= hat i-2 hat j+ hat k find a unit vector parallel to 2 vec a- vec b+3 vec c

If the vectors vecalpha=a hat i+a hat j+c hat k , vecbeta= hat i+ hat k and vec gamma=c hat i+c hat j+b hat k are coplanar, then prove that c is the geometric mean of a and b.