Home
Class 12
MATHS
If the planes vecr.(hati+hatj+hatk)=q(1)...

If the planes `vecr.(hati+hatj+hatk)=q_(1),vecr.(hati+2ahatj+hatk)=q_(2)andvecr.(ahati+a^(2)hatj+hatk)=q_(3)` intersect in a line, then the value of `a` is

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|87 Videos
  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|34 Videos
  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise LEVEL-2|42 Videos
  • STRAIGHT LINES

    VMC MODULES ENGLISH|Exercise JEE Advanced Archive (State true or false: Q. 42)|1 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

If the planes vecr.(hati+hatj+hatk)=1, vecr.(hati+2ahatj+hatk)=2 and vecr. (ahati+a^(2)hatj+hatk)=3 intersect in a line, then the possible number of real values of a is

If the planes vecr.(2hati-hatj+2hatk)=4 and vecr.(3hati+2hatj+lamda hatk)=3 are perpendicular then lamda=

The angle between the planes vecr.(2hati-hatj+hatk)=6 and vecr.(hati+hatj+2hatk)=5 is

Find the angle between the planes vecr.(hati+hatj-2hatk)=3 and vecr.(2hati-2hatj+hatk)=2 2

The plane through the point (-1,-1,-1) nd containing the line of intersection of the planes vecr.(hati+3hatj-hatk)=0 ,vecr.(hatj+2hatk)=0 is (A) vecr.(hati+2hatj-3hatk)=0 (B) vecr.(hati+4hatj+hatk)=0 (C) vecr.(hati+5hatj-5hatk)=0 (D) vecr.(hati+hatj-3hatk)=0

The distance between the planes given by vecr.(hati+2hatj-2hatk)+5=0 and vecr.(hati+2hatj-2hatk)-8=0 is

Angle between the line vecr=(2hati-hatj+hatk)+lamda(-hati+hatj+hatk) and the plane vecr.(3hati+2hatj-hatk)=4 is

Find the line of intersection of the planes vecr.(3hati-hatj+hatk)=1 and vecr.(hati+4hatj-2hatk)=2

Let veca=2hati+3hatj+4hatk, vecb=hati-2hatj+hatk and vecc=hati+hatj-hatk. If vecr xx veca =vecb and vecr.vec c=3, then the value of |vecr| is equal to

The angle between the planes vecr. (2 hati - 3 hatj + hatk) =1 and vecr. (hati - hatj) =4 is