Home
Class 12
MATHS
CP and CD are conjugate semi-diameters o...

CP and CD are conjugate semi-diameters of the ellipse `x^(2)/a^(2) + y^(2)/b^(2) = 1`, The locus of the mid-point of PD, is

A

`(x^2)/(a^2)+(y^2)/(b^2)=(1)/(2)`

B

`(x^2)/(a^2)+(y^2)/(b^2)=1`

C

`(x^2)/(a^2)+(y^2)/(b^2)=(3)/(2)`

D

`(x^2)/(a^2)+(y^2)/(b^2)=2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the locus of the midpoint of the line segment PD where CP and CD are conjugate semi-diameters of the ellipse given by the equation \( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \), we can follow these steps: ### Step 1: Identify Points P and D Given that CP and CD are conjugate semi-diameters, we can express the coordinates of points P and D in terms of a parameter \( \theta \): - Point P: \( P(a \cos \theta, b \sin \theta) \) - Point D: Since D is conjugate to P, its coordinates can be expressed as: \[ D(-a \sin \theta, b \cos \theta) \] ### Step 2: Find the Midpoint M of PD The midpoint M of the line segment PD can be calculated using the midpoint formula: \[ M(h, k) = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \] Substituting the coordinates of P and D: \[ h = \frac{a \cos \theta - a \sin \theta}{2} = \frac{a(\cos \theta - \sin \theta)}{2} \] \[ k = \frac{b \sin \theta + b \cos \theta}{2} = \frac{b(\sin \theta + \cos \theta)}{2} \] ### Step 3: Express \( h \) and \( k \) in Terms of \( \theta \) From the expressions for \( h \) and \( k \), we can write: \[ \frac{2h}{a} = \cos \theta - \sin \theta \] \[ \frac{2k}{b} = \sin \theta + \cos \theta \] ### Step 4: Square and Add the Equations Now we square both equations and add them: \[ \left(\frac{2h}{a}\right)^2 + \left(\frac{2k}{b}\right)^2 = (\cos \theta - \sin \theta)^2 + (\sin \theta + \cos \theta)^2 \] Calculating the right-hand side: \[ (\cos \theta - \sin \theta)^2 = \cos^2 \theta - 2\cos \theta \sin \theta + \sin^2 \theta \] \[ (\sin \theta + \cos \theta)^2 = \sin^2 \theta + 2\sin \theta \cos \theta + \cos^2 \theta \] Adding these two results: \[ \cos^2 \theta + \sin^2 \theta - 2\cos \theta \sin \theta + \sin^2 \theta + \cos^2 \theta + 2\sin \theta \cos \theta = 2 \] Thus, we have: \[ \left(\frac{2h}{a}\right)^2 + \left(\frac{2k}{b}\right)^2 = 2 \] ### Step 5: Simplify the Equation This can be rewritten as: \[ \frac{h^2}{\left(\frac{a}{\sqrt{2}}\right)^2} + \frac{k^2}{\left(\frac{b}{\sqrt{2}}\right)^2} = 1 \] This represents an ellipse with semi-major axis \( \frac{a}{\sqrt{2}} \) and semi-minor axis \( \frac{b}{\sqrt{2}} \). ### Final Equation Replacing \( h \) and \( k \) with \( x \) and \( y \), we get the locus of the midpoint PD: \[ \frac{x^2}{\frac{a^2}{2}} + \frac{y^2}{\frac{b^2}{2}} = 1 \] or \[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{1}{2} \] ### Conclusion The locus of the midpoint of PD is given by: \[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise LEVEL - 2|111 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|15 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos

Similar Questions

Explore conceptually related problems

If CP and CD are semi-conjugate diameters of the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 , then CP^(2) + CD^(2) =

If theta and phi are eccentric angles of the ends of a pair of conjugate diametres of the ellipse x^2/a^2 + y^2/b^2 = 1 , then (theta - phi) is equal to

The line x = at^(2) meets the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 in the real points iff

Show that the tangents at the ends of conjugate diameters of the ellipse x^(2)/a^(2)+y^(2)/b^(2)=1 intersect on the ellipse x^(2)/a^(2)+y^(2)/b^(2)=2 .

The locus of the poles of normal chords of the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 , is

The locus of the poles of normal chords of the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 , is

if P(theta) and Q(pi/2 +theta) are two points on the ellipse x^2/a^2+y^@/b^2=1 , locus ofmid point of PQ is

The line y=x+rho (p is parameter) cuts the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 at P and Q, then prove that mid point of PQ lies on a^(2)y=-b^(2)x .

If P(theta) and Q((pi)/(2)+theta) are two points on the ellipse (x^(2))/(9)+(y^(2))/(4)=1 then find the locus of midpoint of PQ

the equation of a diameter conjugate to a diameter y=(b)/(a)x of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 is

VMC MODULES ENGLISH-CONIC SECTIONS-LEVEL - 1
  1. Find the middle point of the chord intercepted on the line 2x-y+3 =0 b...

    Text Solution

    |

  2. Find the locus of the mid point of chords of the ellipse x^(2)/a^(2)+y...

    Text Solution

    |

  3. CP and CD are conjugate semi-diameters of the ellipse x^(2)/a^(2) + y^...

    Text Solution

    |

  4. The equation of the chord of (x^(2))/(36)+(y^(2))/(9)=1 which is ...

    Text Solution

    |

  5. Ifchord ofcontact ofthe tangents drawn from the point (alpha,beta)to t...

    Text Solution

    |

  6. If P=(x , y),F1=(3,0),F2=(-3,0), and 16 x^2+25 y^2=400 , then P F1+P F...

    Text Solution

    |

  7. If tan alpha tan beta=-(a^(2))/(b^(2), then the chord joining two poin...

    Text Solution

    |

  8. If F1" and "F2 be the feet of perpendicular from the foci S1" and "S2 ...

    Text Solution

    |

  9. The area of the rectangle formed by the perpendicular from the center ...

    Text Solution

    |

  10. Find the points on the ellipse (x^2)/4+(y^2)/9=1 on which the norma...

    Text Solution

    |

  11. Let Sa n dS ' be two foci of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 . I...

    Text Solution

    |

  12. The locus of the point of intersection of perpendicular tangents to x^...

    Text Solution

    |

  13. Prove that the focus of id-points of the portion of the tamgents to th...

    Text Solution

    |

  14. Find the value of lambda for which the equation lambdax^2 + 4xy + y^2 ...

    Text Solution

    |

  15. Find the equation of the hyperbola whose : focus is (1,1) directrix is...

    Text Solution

    |

  16. If e and e' be the eccentricities of two conics S=0 and S'=0 and if e^...

    Text Solution

    |

  17. The vertices of a hyperbola are at (0, 0) and (10, 0) and one of its f...

    Text Solution

    |

  18. The equation (x^2)/(12-lambda)+(y^2)/(8-lambda)=1 represents

    Text Solution

    |

  19. The equation (x^2)/(1-k)-(y^2)/(1+k)=1, k gt 1 represents:-

    Text Solution

    |

  20. If e is the eccentricity of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(...

    Text Solution

    |