Home
Class 12
MATHS
If the circle x^2+y^2=a^2 intersects the...

If the circle `x^2+y^2=a^2` intersects the hyperbola `x y=c^2` at four points `P(x_1, y_1),Q(x_2, y_2),R(x_3, y_3),` and `S(x_4, y_4),` then `x_1+x_2+x_3+x_4=0` `y_1+y_2+y_3+y_4=0` `x_1x_2x_3x_4=C^4` `y_1y_2y_3y_4=C^4`

A

`x_1+x_2+x_3+x_4=0`

B

`y_1+y_2+y_3+y_4=0`

C

`x_1x_2x_3x_4=2c^2`

D

`y_1y_2y_3y_4=2c^4`

Text Solution

Verified by Experts

The correct Answer is:
A, B
Promotional Banner

Topper's Solved these Questions

  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise LEVEL - 2|111 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|15 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos

Similar Questions

Explore conceptually related problems

If the circle x^(2)+y^(2)=r^(2) intersects the hyperbola xy=c^(2) in four points (x_(i),y_(i)) for i=1,2,3 and 4 then y_(1)+y_(2)+y_(3)+y_(4)=

If the hyperbola xy=c^(2) intersects the circle x^(2)+y^(2)=a^(2)" is four points "P(x_(1),y_(1)), Q(x_(2),y_(2)), R(x_(3),y_(3)) and S(x_(4),y_(4)) then show that (i) x_(1)+x_(2)+x_(3)+x_(4)=0 (ii) y_(1)+y_(2)+y_(3)+y_(4)=0 (iii) x_(1)x_(2)x_(3)x_(4)=c^(4) (iv) y_(1)y_(2)y_(3)y_(4)=c^(4)

If four points (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) and (x_(4),y_(4)) taken in order in a parallelogram, then:

If the points (x_1, y_1),(x_2,y_2), and (x_3, y_3) are collinear show that (y_2-y_3)/(x_2x_3)+(y_3-y_1)/(x_3x_1)+(y_1-y_2)/(x_1x_2)=0

If the normal at four points P_(i)(x_(i), (y_(i)) l, I = 1, 2, 3, 4 on the rectangular hyperbola xy = c^(2) meet at the point Q(h, k), prove that x_(1) + x_(2) + x_(3) + x_(4) = h, y_(1) + y_(2) + y_(3) + y_(4) = k x_(1)x_(2)x_(3)x_(4) =y_(1)y_(2)y_(3)y_(4) =-c^(4)

If the normals to the ellipse x^2/a^2+y^2/b^2= 1 at the points (x_1, y_1), (x_2, y_2) and (x_3, y_3) are concurrent, prove that |(x_1,y_1,x_1y_1),(x_2,y_2,x_2y_2),(x_3,y_3,x_3y_3)|=0 .

A circle cuts the rectangular hyperbola xy=1 in the points (x_(r),y_(r)), r=1,2,3,4 . Prove that x_(1)x_(2)x_(3)x_(4)=y_(1)y_(2)y_(3)y_(4)=1

If the normal at the point P(x_1y_1),i=1.2,3,4 on the hyperbola xy=c^2 are concurrent at the point Q(h, k), then ((x_1+x_2+x_3+x_4)(y_1+y_2+y_3+y_4))/(x_1x_2x_3x_4) is:

If the join of (x_1,y_1) and (x_2,y_2) makes on obtuse angle at (x_3,y_3), then prove that (x_3-x_1)(x_3-x_2)+(y_3-y_1)(y_3-y_2)<0

The value of |[2x_1y_1, x_1y_2+x_2y_1, x_1y_3+x_3y_1], [x_1y_2+x_2y_1, 2x_2y_2, x_2y_3+x_3y_2], [x_1y_3+x_3y_1, x_2y_3+x_3y_2, 2x_3y_3]| is.

VMC MODULES ENGLISH-CONIC SECTIONS-LEVEL - 1
  1. The equation of hyperbola whose asymtotes are the straight lines 3x-4y...

    Text Solution

    |

  2. A rectangular hyperbola with centre C, is intersect by a circle of rad...

    Text Solution

    |

  3. If the circle x^2+y^2=a^2 intersects the hyperbola x y=c^2 at four poi...

    Text Solution

    |

  4. If the normal at the point t1 to the rectangular hyperbola xy=c^(2) me...

    Text Solution

    |

  5. Prove that the locus of the point of intersection of the tangents at t...

    Text Solution

    |

  6. If ea n de ' the eccentricities of a hyperbola and its conjugate, p...

    Text Solution

    |

  7. If the line 2x+sqrt(6)y=2 touches the hyperbola x^2-2y^2=4 , then the ...

    Text Solution

    |

  8. An equation of a tangent to the hyperbola 16x^2-25y^2-96x + 100y-356-...

    Text Solution

    |

  9. If the line y=3x+lambda touches the hyperbola 9x^(2)-5y^(2)=45, then t...

    Text Solution

    |

  10. Tangents drawn from the point (c, d) to the hyperbola (x^(2))/(a^(2))-...

    Text Solution

    |

  11. If the tangents drawn from a point on the hyperbola x^(2)-y^(2)=a^(2)-...

    Text Solution

    |

  12. The product of perpendicular drawn from any points on a hyperbola (x^2...

    Text Solution

    |

  13. The locus of the point of intersection of the tangents at the ends of ...

    Text Solution

    |

  14. If the curves (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 (agtb) and x^(2)-y(2)=...

    Text Solution

    |

  15. A normal to the hyperbola (x^2)/4-(y^2)/1=1 has equal intercepts on th...

    Text Solution

    |

  16. Which of the following equations in parametric form can represent a hy...

    Text Solution

    |

  17. The distance of the origin from the normal drawn at the point (1,-1) o...

    Text Solution

    |

  18. Tangent is drawn at the point (-1,1) on the hyperbola 3x^2-4y^2+1=0. T...

    Text Solution

    |

  19. Let LL1 be a latusrectum of a hyperbola and S1 is the other focus. If ...

    Text Solution

    |

  20. If a latus rectum of an ellipse subtends a right angle at the centre o...

    Text Solution

    |