Home
Class 12
MATHS
If the line 2x+sqrt(6)y=2 touches the hy...

If the line `2x+sqrt(6)y=2` touches the hyperbola `x^2-2y^2=4` , then the point of contact is `(-2,sqrt(6))` (b) `(-5,2sqrt(6))` `(1/2,1/(sqrt(6)))` (d) `(4,-sqrt(6))`

A

`(-2,sqrt(6))`

B

`(-sqrt(5),2sqrt(6))`

C

`((1)/(2),(1)/(sqrt(6)))`

D

`(4,sqrt(6))`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise LEVEL - 2|111 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|15 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos

Similar Questions

Explore conceptually related problems

If the line 2x+sqrt6y=2 touches the hyperbola x^2-2y^2=4 , then the point of contact is

If the line y=x+sqrt(3) touches the ellipse (x^(2))/(4)+(y^(2))/(1)=1 then the point of contact is

Show that the line y= x + sqrt(5/6 touches the ellipse 2x^2 + 3y^2 = 1 . Find the coordinates of the point of contact.

(sqrt(6+2sqrt(5)))(sqrt(6-2sqrt(5)))

The line x-y+2=0 touches the parabola y^2 = 8x at the point (A) (2, -4) (B) (1, 2sqrt(2)) (C) (4, -4 sqrt(2) (D) (2, 4)

The line x-y+2=0 touches the parabola y^2 = 8x at the point (A) (2, -4) (B) (1, 2sqrt(2)) (C) (4, -4 sqrt(2) (D) (2, 4)

If t a ntheta=-1/(sqrt(5)) and theta lies in the IV quadrant, then the value of costheta is a. (sqrt(5))/(sqrt(6)) b. 2/(sqrt(6)) c. 1/2 d. 1/(sqrt(6))

Radius of the circle that passes through the origin and touches the parabola y^2=4a x at the point (a ,2a) is (a) 5/(sqrt(2))a (b) 2sqrt(2)a (c) sqrt(5/2)a (d) 3/(sqrt(2))a

(4(sqrt(6) + sqrt(2)))/(sqrt(6) - sqrt(2)) - (2 + sqrt(3))/(2 - sqrt(3)) =

The eccentricity of the hyperbola x^2-4y^2=1 is a. (sqrt(3))/2 b. (sqrt(5))/2 c. 2/(sqrt(3)) d. 2/(sqrt(5))

VMC MODULES ENGLISH-CONIC SECTIONS-LEVEL - 1
  1. Prove that the locus of the point of intersection of the tangents at t...

    Text Solution

    |

  2. If ea n de ' the eccentricities of a hyperbola and its conjugate, p...

    Text Solution

    |

  3. If the line 2x+sqrt(6)y=2 touches the hyperbola x^2-2y^2=4 , then the ...

    Text Solution

    |

  4. An equation of a tangent to the hyperbola 16x^2-25y^2-96x + 100y-356-...

    Text Solution

    |

  5. If the line y=3x+lambda touches the hyperbola 9x^(2)-5y^(2)=45, then t...

    Text Solution

    |

  6. Tangents drawn from the point (c, d) to the hyperbola (x^(2))/(a^(2))-...

    Text Solution

    |

  7. If the tangents drawn from a point on the hyperbola x^(2)-y^(2)=a^(2)-...

    Text Solution

    |

  8. The product of perpendicular drawn from any points on a hyperbola (x^2...

    Text Solution

    |

  9. The locus of the point of intersection of the tangents at the ends of ...

    Text Solution

    |

  10. If the curves (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 (agtb) and x^(2)-y(2)=...

    Text Solution

    |

  11. A normal to the hyperbola (x^2)/4-(y^2)/1=1 has equal intercepts on th...

    Text Solution

    |

  12. Which of the following equations in parametric form can represent a hy...

    Text Solution

    |

  13. The distance of the origin from the normal drawn at the point (1,-1) o...

    Text Solution

    |

  14. Tangent is drawn at the point (-1,1) on the hyperbola 3x^2-4y^2+1=0. T...

    Text Solution

    |

  15. Let LL1 be a latusrectum of a hyperbola and S1 is the other focus. If ...

    Text Solution

    |

  16. If a latus rectum of an ellipse subtends a right angle at the centre o...

    Text Solution

    |

  17. I the latus rectum through one focus of a hyperbola subtends a right ...

    Text Solution

    |

  18. The transverse axis of the hyperbola 5x^2-4y^2-30x-8y+121=0 is

    Text Solution

    |

  19. If the pair of lines b^2x^2-a^2y^2=0 are inclined at an angle theta, t...

    Text Solution

    |

  20. If 2^a+2^(4-a) lt 17, then (x^2)/(a)+(y^2)/(b)=1 reperesents

    Text Solution

    |