Home
Class 12
MATHS
Suppose we define integral using the fol...

Suppose we define integral using the following formula `int_(a)^(b)f(x)dx = (b-a)/(2) (f(a)+f(b))`, for more accurate result for `c in (a, b), F(c) = (c-a)/(2) (f(a)+f(c)) + (b-c)/(2)(f(b) + f(c))`.
When `c = (a+b)/(2)`, then `int_(a)^(b) f(x)dx = (b-a)/(4)(f(a) + f(b) + 2f(c))`.
`lim_(trarra)(int_(a)^(t)f(x) dx -((t-a))/(2)(f(t)+f(a)))/((t-a)^(3))=0 forall a` Then the degree of `f(x) ` can at most be

A

`pi//4`

B

`pi(sqrt(2)+1)//4`

C

`pi(sqrt(2)+1)//8`

D

`(pi)/(8)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

Suppose we define the definite integral using the following formula int_a^b f(x)dx=(b-a)/2 (f(x)+f(b)) , for more accurate result for c in (a,b), F(c)=(c-a)/2 (f(a)+f(c))+(b-c)/2(f(b)+f(c)) and when c=(a+b)/2, int_a^b f(x)dx=(b-a)/4(f(a)+f(b)+2f(c))

If f(a+b-x) =f(x) , then int_(a)^(b) x f(x) dx is equal to

int_(a+c)^(b+c) f(x) dx is equal to

Prove that int_(a)^(b)f(x)dx=(b-a)int_(0)^(1)f((b-a)x+a)dx

If int_(a)^(b)(f(x))/(f(x)+f(a+b-x))dx=10 , then

Evaluate each of the following integral: int_a^b(f(x))/(f(x)+f(a+b-x))dx

Let the definite integral be defined by the formula int_(a)^(b)f(x)dx=(b-a)/2(f(a)+f(b)) . For more accurate result, for c epsilon (a,b), we can use int_(a)^(b)f(x)dx=int_(a)^(c)f(x)dx+int_(c)^(b)f(x)dx=F(c) so that for c=(a+b)/2 we get int_(a)^(b)f(x)dx=(b-a)/4(f(a)+f(b)+2f(c)) . If f''(x)lt0 AA x epsilon (a,b) and c is a point such that altcltb , and (c,f(c)) is the point lying on the curve for which F(c) is maximum then f'(c) is equal to

If | int_(a)^(b) f(x)dx|= int_(a)^(b)|f(x)|dx,a ltb,"then " f(x)=0 has

If f(x) = a + bx + cx^2 where a, b, c in R then int_o ^1 f(x)dx

Prove that int_a^bf(x)dx=int_(a+c)^(b+c)f(x-c)dx , and when f(x) is odd function, int_(-a)^af(x)dx=0

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -JEE Advanced (Archive)
  1. Suppose we define integral using the following formula int(a)^(b)f(x)d...

    Text Solution

    |

  2. Let the definite integral be defined by the formula int(a)^(b)f(x)dx=(...

    Text Solution

    |

  3. Suppose we define integral using the following formula int(a)^(b)f(x)d...

    Text Solution

    |

  4. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  5. If int(n)=int(-pi)^(pi)(sin nx)/((1+pi^(x))sinx) dx, n=0,1,2,………. then

    Text Solution

    |

  6. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  7. Let d/(dx)F(x)=(e^(sinx))/x . x lt0. If int(1)^(4)(2e^(sinx^(2)))/xdx=...

    Text Solution

    |

  8. int(1)^(e^(37))(pisin(pilogx))/(x)dx equals to.

    Text Solution

    |

  9. Prove that: int0^(2pi)(xsin^(2n)x)/(sin^(2n)+cos^(2n)x)dx

    Text Solution

    |

  10. The value of int2^3(sqrt(x))/(sqrt(5-x)+sqrt(x))dxi s

    Text Solution

    |

  11. The value of overset(3pi//4)underset(pi//4)int (x)/(1+sin x) dx is equ...

    Text Solution

    |

  12. The value of int(-2)^2|1-x^2|dx is

    Text Solution

    |

  13. The integral int0^(1. 5)[x^2]dx ,w h e r e[dot] denotoes the greatest ...

    Text Solution

    |

  14. Match the conditions // expression in Column I with statement in Colum...

    Text Solution

    |

  15. Match List I with List II and select the correct answer using the code...

    Text Solution

    |

  16. Evaluate: 5050(int0 1(1-x^(50))^(100)dx)/(int0 1(1-x^(50))^(101)dx)

    Text Solution

    |

  17. Evaluate: int0^pie^(|cosx|)(2s in(1/2cosx)+3cos(1/2cosx))sinxdxdot

    Text Solution

    |

  18. Find the value of int(-pi/3)^(pi/3)(pi+4x^3)/(2-cos(|x|pi/3))dx

    Text Solution

    |

  19. Show that: int0^(pi//2)f(sin2x)sinxdx=sqrt(2)int0^(pi//4)f(cos2x)co...

    Text Solution

    |

  20. int(-pi)^(pi) ( e^(sin x ))/( e^(sinx) + e^(-sinx))dx is equal to

    Text Solution

    |