Home
Class 12
MATHS
The value of overset(3pi//4)underset(pi/...

The value of `overset(3pi//4)underset(pi//4)int (x)/(1+sin x)` dx is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{x}{1 + \sin x} \, dx \), we will use a property of definite integrals. ### Step-by-step Solution: 1. **Define the Integral**: Let \( I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{x}{1 + \sin x} \, dx \). 2. **Use the Integral Property**: We can use the property of integrals that states: \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx \] Here, \( a = \frac{\pi}{4} \) and \( b = \frac{3\pi}{4} \). Thus, \( a + b = \pi \). 3. **Substitute in the Integral**: Substitute \( x \) with \( \pi - x \): \[ I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{\pi - x}{1 + \sin(\pi - x)} \, dx \] Since \( \sin(\pi - x) = \sin x \), we can rewrite the integral as: \[ I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{\pi - x}{1 + \sin x} \, dx \] 4. **Combine the Two Integrals**: Now we have two expressions for \( I \): \[ I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{x}{1 + \sin x} \, dx \quad \text{(Equation 1)} \] \[ I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{\pi - x}{1 + \sin x} \, dx \quad \text{(Equation 2)} \] Adding both equations: \[ 2I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{x + (\pi - x)}{1 + \sin x} \, dx = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{\pi}{1 + \sin x} \, dx \] Thus: \[ 2I = \pi \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{1}{1 + \sin x} \, dx \] 5. **Simplify the Integral**: We can simplify \( \frac{1}{1 + \sin x} \) by multiplying the numerator and denominator by \( 1 - \sin x \): \[ \frac{1 - \sin x}{(1 + \sin x)(1 - \sin x)} = \frac{1 - \sin x}{\cos^2 x} \] Therefore: \[ 2I = \pi \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \left( \frac{1 - \sin x}{\cos^2 x} \right) \, dx \] 6. **Separate the Integral**: This can be separated into two integrals: \[ 2I = \pi \left( \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \sec^2 x \, dx - \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \tan x \sec x \, dx \right) \] 7. **Evaluate the Integrals**: - The integral of \( \sec^2 x \) is \( \tan x \): \[ \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \sec^2 x \, dx = \tan\left(\frac{3\pi}{4}\right) - \tan\left(\frac{\pi}{4}\right) = -1 - 1 = -2 \] - The integral of \( \tan x \sec x \) is \( \sec x \): \[ \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \tan x \sec x \, dx = \sec\left(\frac{3\pi}{4}\right) - \sec\left(\frac{\pi}{4}\right) = -\sqrt{2} - \sqrt{2} = -2\sqrt{2} \] 8. **Combine Results**: Thus: \[ 2I = \pi \left( -2 + 2\sqrt{2} \right) = -2\pi + 2\pi\sqrt{2} \] Therefore: \[ I = \frac{-2\pi + 2\pi\sqrt{2}}{2} = \pi\sqrt{2} - \pi \] 9. **Final Result**: Thus, the value of the integral is: \[ I = \pi(\sqrt{2} - 1) \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equal to

overset(pi//2)underset(-pi//2)int (cos x)/(1+e^(x))dx=

The value of overset(16pi//3)underset(0)int |sinx|dx is

overset(pi)underset(0)int (1)/(1+3^(cosx)) dx is equal to

The value of the integral overset(pi)underset(0)int (sin k x)/(sin x)dx (k is an even integer) is equal to

The value of the integral overset(pi)underset(0)int log(1+cos x)dx is

int_(0)^(1) |sin 2pi x|dx id equal to

int_(0)^(1//2) |sin pi x|dx is equal to

int_(0)^(pi//4) sin(x-[x]) dx is equalto

The value of underset(0)overset(pi//2)int (sin^(3)x)/(sin x + cos x)dx is (pi-1)/(k) . The value of k is ________.

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -JEE Advanced (Archive)
  1. Prove that: int0^(2pi)(xsin^(2n)x)/(sin^(2n)+cos^(2n)x)dx

    Text Solution

    |

  2. The value of int2^3(sqrt(x))/(sqrt(5-x)+sqrt(x))dxi s

    Text Solution

    |

  3. The value of overset(3pi//4)underset(pi//4)int (x)/(1+sin x) dx is equ...

    Text Solution

    |

  4. The value of int(-2)^2|1-x^2|dx is

    Text Solution

    |

  5. The integral int0^(1. 5)[x^2]dx ,w h e r e[dot] denotoes the greatest ...

    Text Solution

    |

  6. Match the conditions // expression in Column I with statement in Colum...

    Text Solution

    |

  7. Match List I with List II and select the correct answer using the code...

    Text Solution

    |

  8. Evaluate: 5050(int0 1(1-x^(50))^(100)dx)/(int0 1(1-x^(50))^(101)dx)

    Text Solution

    |

  9. Evaluate: int0^pie^(|cosx|)(2s in(1/2cosx)+3cos(1/2cosx))sinxdxdot

    Text Solution

    |

  10. Find the value of int(-pi/3)^(pi/3)(pi+4x^3)/(2-cos(|x|pi/3))dx

    Text Solution

    |

  11. Show that: int0^(pi//2)f(sin2x)sinxdx=sqrt(2)int0^(pi//4)f(cos2x)co...

    Text Solution

    |

  12. int(-pi)^(pi) ( e^(sin x ))/( e^(sinx) + e^(-sinx))dx is equal to

    Text Solution

    |

  13. Prove that int(0)^(1)tan^(-1)(1/(1-x+x^(2)))dx=2int(0)^(1)tan^(-1)xdx....

    Text Solution

    |

  14. Evaluate int(0)^(pi//4) log (1+tan theta)d theta

    Text Solution

    |

  15. about to only mathematics

    Text Solution

    |

  16. Evaluate int(-1//sqrt(3))^(1//sqrt(3)) (x^(4))/(1-x^(4)) "cos"^(-1)((2...

    Text Solution

    |

  17. Evaluate: int2^3(2x^5+x^4-2x^3+2x^2+1)/((x^2+1)(x^4-1))dx

    Text Solution

    |

  18. A cubic function f(x) vanishes at x=-2 and has relative minimum/maximu...

    Text Solution

    |

  19. Evaluate: int0^pi(xsin2xsin(pi/2cosx)/(2x-pi)dx

    Text Solution

    |

  20. Prove that for any positive integer k ,(sin2k x)/(sinx)=2[cosx+cos3x+...

    Text Solution

    |