Home
Class 12
MATHS
Let f be a non-negative function defined...

Let `f` be a non-negative function defined on the interval `[0,1]`. If `int_0^xsqrt(1-(f^(prime)(t))^2)dt=int_0^xf(t)dt ,0lt=xlt=1,a n d \ f(0)=0`, then

A

`f((1)/(2))lt (1)/(2)` and `f((1)/(3))gt (1)/(3)`

B

`f((1)/(2))gt (1)/(2)` and `f((1)/(3))gt (1)/(3)`

C

`f((1)/(2))lt (1)/(2)` and `f((1)/(3))lt (1)/(3)`

D

`f((1)/(2))gt (1)/(2)` and `f((1)/(3))lt (1)/(3)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

Let f be a function defined on the interval [0,2pi] such that int_(0)^(x)(f^(')(t)-sin2t)dt=int_(x)^(0)f(t)tantdt and f(0)=1 . Then the maximum value of f(x) is…………………..

If f(x)=int_0^x tf(t)dt+2, then

If f(x)=int_0^x(sint)/t dt ,x >0, then

Let f be a differentiable function on R and satisfying the integral equation x int_(0)^(x)f(t)dt-int_(0)^(x)tf(x-t)dt=e^(x)-1 AA x in R . Then f(1) equals to ___

Let f be a real-valued function defined on interval (0,oo) ,by f(x)=lnx+int_0^xsqrt(1+sint).dt . Then which of the following statement(s) is (are) true? (A). f"(x) exists for all in (0,oo) . " " (B). f'(x) exists for all x in (0,oo) and f' is continuous on (0,oo) , but not differentiable on (0,oo) . " " (C). there exists alpha>1 such that |f'(x)|<|f(x)| for all x in (alpha,oo) . " " (D). there exists beta>1 such that |f(x)|+|f'(x)|<=beta for all x in (0,oo) .

If f(x)=x^(2)int_(0)^(1)f(t)dt+2 , then

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

If int_0^xf(t) dt=x+int_x^1 tf(t)dt, then the value of f(1)

Let f(x),xgeq0, be a non-negative continuous function, and let f(x)=int_0^xf(t)dt ,xgeq0, if for some c >0,f(x)lt=cF(x) for all xgeq0, then show that f(x)=0 for all xgeq0.

If f(x)=int_0^x{f(t)}^(- 1)dt and int_0^1{f(t)}^(- 1)=sqrt(2), then

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -JEE Advanced (Archive)
  1. For any real number x ,l e t[x] denote the largest integer less than o...

    Text Solution

    |

  2. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  3. Let f be a non-negative function defined on the interval [0,1]. If int...

    Text Solution

    |

  4. f(x)=int0^x f(t) dt=x+intx^1 tf(t)dt, then the value of f(1) is

    Text Solution

    |

  5. Let f : R to R be a differentiable function and f(1) = 4. Then, the va...

    Text Solution

    |

  6. Consider the statements : P : There exists some x IR such that f(x)...

    Text Solution

    |

  7. Let f (x)= int (x^(2))^(x ^(3))(dt)/(ln t) for x gt 1 and g (x) = in...

    Text Solution

    |

  8. Let f(x)=|secxcosx s e c^2x+cotx cos e c\ x cos^2x cos^2x cos e c^2x1c...

    Text Solution

    |

  9. For x >0,l e tf(x)=int1^x((log)e t)/(1+t)dtdot Find the function...

    Text Solution

    |

  10. Let a+b=4,w h e r ea<2,a n dl e tg(x) be a differentiable function. If...

    Text Solution

    |

  11. Determine a positive integer nlt=5 such that int0^1e^x(x-1)^n=16-6e

    Text Solution

    |

  12. about to only mathematics

    Text Solution

    |

  13. Investigate for the maxima and minima of the function f(x)=int1^x[2(t...

    Text Solution

    |

  14. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  15. Let S(n)=underset(k=1)overset(n)sum (n)/(n^(2)+nk+k^(2)) and T(n)=unde...

    Text Solution

    |

  16. Show that ("lim")(n vec oo)(1/(n+1)+1/(n+2)++1/(6n))=log6

    Text Solution

    |

  17. about to only mathematics

    Text Solution

    |

  18. about to only mathematics

    Text Solution

    |

  19. about to only mathematics

    Text Solution

    |

  20. Let O(0,0),A(2,0),a n dB(1 1/(sqrt(3))) be the vertices of a triangle....

    Text Solution

    |