Home
Class 12
MATHS
The area enclosed by the curve y=sinx+co...

The area enclosed by the curve `y=sinx+cosxa n dy=|cosx-sinx|` over the interval `[0,pi/2]` is `(a)4(sqrt(2)-2)` (b) `2sqrt(2)` (`sqrt(2)` -1) `(c)2(sqrt(2)` +1) (d) `2sqrt(2)(sqrt(2)+1)`

A

`4(sqrt (2)-1)`

B

`2sqrt(2)(sqrt(2)-1)`

C

`2(sqrt(2)+1)`

D

`2sqrt(2)(sqrt(2)+1)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

The area enclosed by the curves y=sinx+cosx and y=|cosx−sinx| over the interval [0,pi/2] is (a) 4(sqrt2-1) (b) 2sqrt2(sqrt2-1) (c) 2(sqrt2+1) (d) 2sqrt2(sqrt2+1)

The value of sqrt(3-2\ sqrt(2)) is (a) sqrt(2)-1 (b) sqrt(2)+1 (c) sqrt(3)-sqrt(2) (d) sqrt(3)+\ sqrt(2)

int_0^(sqrt(2)) [x^2] dx is equal to (A) 2-sqrt(2) (B) 2+sqrt(2) (C) sqrt(2)-1 (D) sqrt(2)-2

The area under the curve y=|cosx-sinx|, 0 le x le pi/2 , and above x-axis is: (A) 2sqrt(2)+2 (B) 0 (C) 2sqrt(2)-2 (D) 2sqrt(2)

The value of the definite integral int_0^(pi/2)sqrt(tanx)dx is sqrt(2)pi (b) pi/(sqrt(2)) 2sqrt(2)pi (d) pi/(2sqrt(2))

1/(sqrt(9)-\ sqrt(8)) is equal to: (a) 3+2sqrt(2) (b) 1/(3+2sqrt(2)) (c) 3-2sqrt(2) (d) 3/2-\ sqrt(2)

If (0,1),(1,1)a n d(1,0) be the middle points of the sides of a triangle, its incentre is (2+sqrt(2),2+sqrt(2) ) (b) [2+sqrt(2),-(2+sqrt(2))] (2-sqrt(2),2-sqrt(2)) (d) [2-sqrt(2),(2+sqrt(2))]

If (0,1),(1,1)a n d(1,0) be the middle points of the sides of a triangle, its incentre is (2+sqrt(2),2+sqrt(2) ) (b) [2+sqrt(2),-(2+sqrt(2))] (2-sqrt(2),2-sqrt(2)) (d) [2-sqrt(2),(2+sqrt(2))]

The value of x in (0,pi/2) satisfying (sqrt(3)-1)/(sinx)+(sqrt(3)+1)/(cosx)=4sqrt(2) is / are

2. "(sqrt(8))^((1)/(3))="? (a) "2," (b) "4" (c) "sqrt(2)," (d) "2sqrt(2)"

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -JEE Advanced (Archive)
  1. Consider the function defined implicitly by the equation y^3-3y+x=0 on...

    Text Solution

    |

  2. Consider the function defined implicitly by the equation y^3-3y+x=0 on...

    Text Solution

    |

  3. The area enclosed by the curve y=sinx+cosxa n dy=|cosx-sinx| over the ...

    Text Solution

    |

  4. Let f:[-1,2]vec[0,oo) be a continuous function such that f(x)=f(1-x)fo...

    Text Solution

    |

  5. Let the straight line x= b divide the area enclosed by y=(1-x)^(2),y=0...

    Text Solution

    |

  6. The area of the region between the curves y=sqrt((1+sinx)/(cos x)) and...

    Text Solution

    |

  7. Let S be the area of the region enclosed by y-e^(-x^(2)),y=0, x=0 and ...

    Text Solution

    |

  8. The area of the region bounded by the curve y=e^x and lines x=0a n dy=...

    Text Solution

    |

  9. For which of the following values of m is the area of the regions boun...

    Text Solution

    |

  10. If [4a2 4a 1 4b2 4b 1 4c2 4c 1] [f-1 f1 f2] = [3a2 + 3a 3b2 + 3b 3c2 +...

    Text Solution

    |

  11. Find the area bounded by the curve x^2=y ,x^2=-ya n dy^2=4x-3

    Text Solution

    |

  12. A curve C passes through (2,0) and the slope at (x , y) as ((x+1)^2...

    Text Solution

    |

  13. Find the area of the region bounded by the curves y=x^2,y=|2-x^2|,a n ...

    Text Solution

    |

  14. Let f(x) be continuous function given by f(x)={2x ,|x|lt=1and x^2+a x+...

    Text Solution

    |

  15. Let C(1) and C(2) be the graphs of the functions y=x^(2) and y=2x, res...

    Text Solution

    |

  16. Let f(x)=M a xi mu m{x^2,(1-x)^2,2x(1-x)}, where 0lt=xlt=1. Determine ...

    Text Solution

    |

  17. Find all the possible values of b >0, so that the area of the bounded ...

    Text Solution

    |

  18. If An be the area bounded by the curve y=(tanx)^n and the lines x=0,\ ...

    Text Solution

    |

  19. In what ratio does the x-axis divide the area of the region bounded by...

    Text Solution

    |

  20. Sketch the curves and identify the region bounded by the curves x=1...

    Text Solution

    |