Home
Class 12
MATHS
The value of the integral int(0)^(pi//...

The value of the integral
`int_(0)^(pi//2)(3sqrt(costheta))/((sqrt(costheta)+sqrt(sintheta))^5)d theta` equals ............

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{3\sqrt{\cos \theta}}{(\sqrt{\cos \theta} + \sqrt{\sin \theta})^5} d\theta, \] we can use the property of definite integrals which states that \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx. \] ### Step 1: Apply the property of definite integrals Let’s apply this property to our integral. Here, \( a = 0 \) and \( b = \frac{\pi}{2} \), so we have: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{3\sqrt{\cos \theta}}{(\sqrt{\cos \theta} + \sqrt{\sin \theta})^5} d\theta = \int_{0}^{\frac{\pi}{2}} \frac{3\sqrt{\sin \theta}}{(\sqrt{\sin \theta} + \sqrt{\cos \theta})^5} d\theta. \] ### Step 2: Combine the two integrals Now, we can add both forms of the integral: \[ 2I = \int_{0}^{\frac{\pi}{2}} \left( \frac{3\sqrt{\cos \theta}}{(\sqrt{\cos \theta} + \sqrt{\sin \theta})^5} + \frac{3\sqrt{\sin \theta}}{(\sqrt{\sin \theta} + \sqrt{\cos \theta})^5} \right) d\theta. \] Since the two terms in the integrand are identical, we can simplify: \[ 2I = \int_{0}^{\frac{\pi}{2}} \frac{3(\sqrt{\cos \theta} + \sqrt{\sin \theta})}{(\sqrt{\cos \theta} + \sqrt{\sin \theta})^5} d\theta = \int_{0}^{\frac{\pi}{2}} \frac{3}{(\sqrt{\cos \theta} + \sqrt{\sin \theta})^4} d\theta. \] ### Step 3: Simplify the integral Now we have: \[ I = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \frac{3}{(\sqrt{\cos \theta} + \sqrt{\sin \theta})^4} d\theta. \] ### Step 4: Change of variables Next, we will multiply the numerator and denominator by \(\sec^2 \theta\): \[ I = \frac{3}{2} \int_{0}^{\frac{\pi}{2}} \frac{\sec^2 \theta}{(\sqrt{\cos \theta} + \sqrt{\sin \theta})^4} d\theta. \] Let \( t = \tan \theta \), then \( d\theta = \frac{dt}{1+t^2} \) and the limits change from \( 0 \) to \( \infty \). ### Step 5: Substitute and simplify Substituting \( t = \tan \theta \): \[ \sqrt{\cos \theta} = \frac{1}{\sqrt{1+t^2}}, \quad \sqrt{\sin \theta} = \frac{t}{\sqrt{1+t^2}}. \] Thus, \[ \sqrt{\cos \theta} + \sqrt{\sin \theta} = \frac{1+t}{\sqrt{1+t^2}}. \] Now substituting this back into the integral gives: \[ I = \frac{3}{2} \int_{0}^{\infty} \frac{1}{\left(\frac{1+t}{\sqrt{1+t^2}}\right)^4} \cdot \frac{dt}{1+t^2}. \] ### Step 6: Evaluate the integral This simplifies to: \[ I = \frac{3}{2} \int_{0}^{\infty} \frac{(1+t^2)^2}{(1+t)^4} dt. \] This integral can be split into simpler fractions and evaluated using standard techniques. ### Final Step: Calculate the value After evaluating the integral, we find: \[ I = \frac{3}{2} \left( \frac{1}{2} - \frac{1}{3} \right) = \frac{3}{2} \cdot \frac{1}{6} = \frac{1}{4} \cdot 3 = \frac{3}{4}. \] Thus, the final value of the integral is: \[ \boxed{0.5}. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integral: int_0^(pi//2)(sintheta)/(sqrt(1+costheta))d theta

The value of the integral int((1-costheta)^(2/7))/((1+costheta)^(9/7))d theta is

Evaluate: int_0^(pi//2)(costheta)/((1+sintheta)(2+sintheta)) d theta

Evaluate: int_0^(pi//2)sqrt(costheta)sin^3theta d theta

int_0^(pi/2) sqrt(sintheta)cos^5theta d theta

int(cos2theta)/((sintheta+costheta)^(2))d""theta is equal to

The value of definite integral int_((pi)/((pi)/(2)))^((2 pi)/(3))(e^(-theta/2)sqrt(1-sin theta))/(1+cos theta)d theta is equal to

Solve sqrt(3)costheta+sintheta=sqrt(2)

if (1-costheta)/(sintheta)=(sqrt(3))/(3) , then theta =

lim_(trarr(pi/2)^(-))int_(0)^(t) tanthetasqrt(costheta)ln(costheta)d theta is equal to :

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -JEE Advanced (Archive)
  1. Find the area of the region bounded by the curves y=x^2,y=|2-x^2|,a n ...

    Text Solution

    |

  2. Let f(x) be continuous function given by f(x)={2x ,|x|lt=1and x^2+a x+...

    Text Solution

    |

  3. Let C(1) and C(2) be the graphs of the functions y=x^(2) and y=2x, res...

    Text Solution

    |

  4. Let f(x)=M a xi mu m{x^2,(1-x)^2,2x(1-x)}, where 0lt=xlt=1. Determine ...

    Text Solution

    |

  5. Find all the possible values of b >0, so that the area of the bounded ...

    Text Solution

    |

  6. If An be the area bounded by the curve y=(tanx)^n and the lines x=0,\ ...

    Text Solution

    |

  7. In what ratio does the x-axis divide the area of the region bounded by...

    Text Solution

    |

  8. Sketch the curves and identify the region bounded by the curves x=1...

    Text Solution

    |

  9. Compute the area of the region bounded by the curves y-e x(log)e xa n ...

    Text Solution

    |

  10. Find all maxima and minima of the function y = x(x-1)^2 for 0<=x<=2 ...

    Text Solution

    |

  11. Find the area of the region bounded by the curve C: y = tan x, tangent...

    Text Solution

    |

  12. Find the area bounded by the curves x^2+y^2=25 ,4y=|4-x^2|, and x=0 ab...

    Text Solution

    |

  13. Find the area bounded by the curves x^2+y^2=4,x^2=sqrt(2)y ,a n dx=ydo...

    Text Solution

    |

  14. Sketch the region bounded by the curves y=sqrt(5-x^2) and y=|x-1| and ...

    Text Solution

    |

  15. Find the area of the region bounded by the x-axis and the curves de...

    Text Solution

    |

  16. Find the area bounded by the x-axis, part of the curve y=(1-8/(x^2)) ,...

    Text Solution

    |

  17. Find the area bounded by the curves y=2x-x^2 and the straight line y=-...

    Text Solution

    |

  18. The area of the region {(x,y): xy le 8,1 le y le x^(2)} is :

    Text Solution

    |

  19. If I=(2)/(pi)int(-pi//4)^(pi//4)(dx)/((1+e^(sin x))(2-cos 2 x)) then 2...

    Text Solution

    |

  20. The value of the integral int(0)^(pi//2)(3sqrt(costheta))/((sqrt(cos...

    Text Solution

    |