Home
Class 12
MATHS
Evaluate the following integrals. i...

Evaluate the following integrals.
`int sin x cos x (sin 2x + cos 2x) dx `

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int \sin x \cos x (\sin 2x + \cos 2x) \, dx \), we will follow a systematic approach. ### Step 1: Rewrite the integral We start with the integral: \[ I = \int \sin x \cos x (\sin 2x + \cos 2x) \, dx \] We can use the identity \( \sin x \cos x = \frac{1}{2} \sin 2x \) to simplify the integral. Thus, we rewrite it as: \[ I = \int \frac{1}{2} \sin 2x (\sin 2x + \cos 2x) \, dx \] ### Step 2: Distribute the terms Now, we distribute \( \sin 2x \) inside the integral: \[ I = \frac{1}{2} \int (\sin^2 2x + \sin 2x \cos 2x) \, dx \] ### Step 3: Break down the integral We can split the integral into two parts: \[ I = \frac{1}{2} \left( \int \sin^2 2x \, dx + \int \sin 2x \cos 2x \, dx \right) \] ### Step 4: Evaluate the first integral For the first integral \( \int \sin^2 2x \, dx \), we can use the identity: \[ \sin^2 \theta = \frac{1 - \cos 2\theta}{2} \] Applying this gives: \[ \int \sin^2 2x \, dx = \int \frac{1 - \cos 4x}{2} \, dx = \frac{1}{2} \int (1 - \cos 4x) \, dx \] Now, integrating: \[ = \frac{1}{2} \left( x - \frac{\sin 4x}{4} \right) + C_1 \] ### Step 5: Evaluate the second integral For the second integral \( \int \sin 2x \cos 2x \, dx \), we can use the identity \( \sin 2\theta = 2 \sin \theta \cos \theta \): \[ \int \sin 2x \cos 2x \, dx = \frac{1}{2} \int \sin 4x \, dx \] Integrating gives: \[ = -\frac{1}{8} \cos 4x + C_2 \] ### Step 6: Combine results Now, substituting back into our expression for \( I \): \[ I = \frac{1}{2} \left( \frac{1}{2} \left( x - \frac{\sin 4x}{4} \right) + \left( -\frac{1}{8} \cos 4x \right) \right) \] Simplifying: \[ I = \frac{1}{4} x - \frac{1}{16} \sin 4x - \frac{1}{16} \cos 4x + C \] ### Final Answer Thus, the final result for the integral is: \[ I = \frac{x}{4} - \frac{\sin 4x}{16} - \frac{\cos 4x}{16} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals. int (sinx + cos x)/((sin x - cos x)^(3))dx

Evaluate the following integrals int (dx)/(1+sin x+cos x)

Evaluate the following Integrals. int (dx)/(cos x (sin x + 2 cosx))

Evaluate the following integrals. int sin x sqrt( 1 - cos 2x)dx

Evaluate the following integrals int (cos^(2)x sin x)/(sin x - cos x)dx

Evaluate the following Integrals. int (cos x)/(1+sin x) dx

Evaluate the following Integrals : int (dx)/(sin x(3+cos x))

Evaluate the following integrals: int frac{sin^6x+cos^6x}{sin^2x cos^2x}dx

Evaluate the following integration int sin^(3) x cos^(3) x dx

Evaluate the following integrals. int (dx)/(x cos^(2) (log x))