Home
Class 12
MATHS
Evaluate the following integrals. ...

Evaluate the following integrals.
` int (sinx + cos x)/((sin x - cos x)^(3))dx `

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{\sin x + \cos x}{(\sin x - \cos x)^3} \, dx, \] we will use the substitution method. ### Step 1: Choose a substitution Let \[ t = \sin x - \cos x. \] ### Step 2: Differentiate the substitution Now, we differentiate \(t\) with respect to \(x\): \[ \frac{dt}{dx} = \cos x + \sin x \quad \Rightarrow \quad dt = (\cos x + \sin x) \, dx. \] ### Step 3: Rearranging for \(dx\) From the above, we can express \(dx\) in terms of \(dt\): \[ dx = \frac{dt}{\cos x + \sin x}. \] ### Step 4: Substitute in the integral Now, we substitute \(t\) and \(dx\) back into the integral: \[ I = \int \frac{\sin x + \cos x}{t^3} \cdot \frac{dt}{\cos x + \sin x}. \] Notice that \(\sin x + \cos x\) in the numerator and \(\cos x + \sin x\) in the denominator cancel out: \[ I = \int \frac{1}{t^3} \, dt. \] ### Step 5: Integrate Now we can integrate: \[ I = \int t^{-3} \, dt = \frac{t^{-2}}{-2} + C = -\frac{1}{2t^2} + C. \] ### Step 6: Substitute back for \(t\) Now we substitute back \(t = \sin x - \cos x\): \[ I = -\frac{1}{2(\sin x - \cos x)^2} + C. \] Thus, the final answer is: \[ I = -\frac{1}{2(\sin x - \cos x)^2} + C. \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals int (dx)/(1+sin x+cos x)

Evaluate the following integrals. int sin x sqrt( 1 - cos 2x)dx

Evaluate the following Integrals : int (dx)/(sin x(3+cos x))

Evaluate the following integrals. int sin x cos x (sin 2x + cos 2x) dx

Evaluate the following integrals int (cos^(2)x sin x)/(sin x - cos x)dx

Evaluate the following Integrals : int (cos x)/((1+sin x)(2+sin x))dx

Evaluate the following integrals. int (dx)/(x cos^(2) (log x))

Evaluate the following Integrals. int (cos x)/(1+sin x) dx

Evaluate the following integration int cos^(3)x dx

Evaluate the following Integrals. int (dx)/((2 sin x+ 3 cos x)^(2))