Home
Class 12
MATHS
Evaluate the following integrals. in...

Evaluate the following integrals.
`int cosx tan^(3) x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \cos x \tan^3 x \, dx \), we can follow these steps: ### Step 1: Rewrite \( \tan^3 x \) We know that \( \tan x = \frac{\sin x}{\cos x} \). Therefore, we can express \( \tan^3 x \) as: \[ \tan^3 x = \left(\frac{\sin x}{\cos x}\right)^3 = \frac{\sin^3 x}{\cos^3 x} \] ### Step 2: Substitute into the integral Substituting this into the integral gives: \[ \int \cos x \tan^3 x \, dx = \int \cos x \cdot \frac{\sin^3 x}{\cos^3 x} \, dx = \int \frac{\sin^3 x}{\cos^2 x} \, dx \] ### Step 3: Rewrite \( \sin^3 x \) We can express \( \sin^3 x \) in terms of \( \cos x \): \[ \sin^3 x = \sin x (1 - \cos^2 x) \] Thus, we can rewrite the integral as: \[ \int \frac{\sin^3 x}{\cos^2 x} \, dx = \int \frac{\sin x (1 - \cos^2 x)}{\cos^2 x} \, dx = \int \left(\frac{\sin x}{\cos^2 x} - \frac{\sin x \cos^2 x}{\cos^2 x}\right) \, dx \] This simplifies to: \[ \int \left(\frac{\sin x}{\cos^2 x} - \sin x\right) \, dx \] ### Step 4: Split the integral Now we can split the integral into two parts: \[ \int \frac{\sin x}{\cos^2 x} \, dx - \int \sin x \, dx \] ### Step 5: Solve the first integral Let \( u = \cos x \), then \( du = -\sin x \, dx \) or \( \sin x \, dx = -du \). The first integral becomes: \[ \int \frac{\sin x}{\cos^2 x} \, dx = -\int \frac{1}{u^2} \, du = \frac{1}{u} = \frac{1}{\cos x} \] ### Step 6: Solve the second integral The second integral is straightforward: \[ \int \sin x \, dx = -\cos x \] ### Step 7: Combine the results Combining both parts, we have: \[ \int \cos x \tan^3 x \, dx = \frac{1}{\cos x} + \cos x + C \] where \( C \) is the constant of integration. ### Final Answer Thus, the final result is: \[ \int \cos x \tan^3 x \, dx = \sec x + \cos x + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following Integrals. int (cot x ) dx

Evaluate the following Integrals. int tan^5 x dx

Evaluate the following integrals. int (1)/(1-cosx)dx

Evaluate the following integration int cos^(3)x dx

Evaluate the following integrals : intcos^(-1)(cosx)dx

Evaluate the following Integrals. int sqrt(tan x) dx

Evaluate the following integrals : int(3x+4)^2dx

Evaluate the following Integrals. int (2+ 3cosx)/(sinx^2)dx

Evaluate the following integrals : int_0^2(x+3)dx

Evaluate the following integrals : int{3sinx-4cosx}dx