Home
Class 12
MATHS
Evaluate the following integrals. in...

Evaluate the following integrals.
`int tanx sec^(6) x dx `

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \tan x \sec^6 x \, dx \), we can follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ \int \tan x \sec^6 x \, dx \] ### Step 2: Use substitution We know that the derivative of \( \sec x \) is \( \sec x \tan x \). This suggests that we can use \( u = \sec x \) as our substitution. Thus, we have: \[ du = \sec x \tan x \, dx \] This means: \[ dx = \frac{du}{\sec x \tan x} \] ### Step 3: Rewrite \( \tan x \) and \( \sec^6 x \) in terms of \( u \) From our substitution \( u = \sec x \), we can express \( \tan x \) as: \[ \tan x = \sqrt{\sec^2 x - 1} = \sqrt{u^2 - 1} \] Thus, we can rewrite the integral as: \[ \int \tan x \sec^6 x \, dx = \int \sqrt{u^2 - 1} \cdot u^6 \cdot \frac{du}{\sec x \tan x} \] ### Step 4: Simplify the integral Since \( \sec x = u \) and \( \tan x = \frac{\sqrt{u^2 - 1}}{u} \), we can substitute these back into the integral: \[ \int \tan x \sec^6 x \, dx = \int \sqrt{u^2 - 1} \cdot u^6 \cdot \frac{du}{u \cdot \frac{\sqrt{u^2 - 1}}{u}} = \int u^5 \, du \] ### Step 5: Integrate Now we can integrate: \[ \int u^5 \, du = \frac{u^6}{6} + C \] ### Step 6: Substitute back Now we substitute back \( u = \sec x \): \[ \frac{\sec^6 x}{6} + C \] ### Final Answer Thus, the integral evaluates to: \[ \int \tan x \sec^6 x \, dx = \frac{\sec^6 x}{6} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following Integrals. int (cot x ) dx

Evaluate the following integrals : int(tanx+cotx)^2dx

Evaluate the following integrals : int(tanx+cotx)^2dx

Evaluate the following integrals : int(tanx)/(secx+tanx)dx

Evaluate the following Integrals. int x^(2) a^(x) dx

Evaluate the following Integrals. int x (log x)^(2) dx

Evaluate the following integrals. int (1 + x) sqrt(1-x)dx

Evaluate the following integrals. int (dx)/(x cos^(2) (log x))

Evaluate the following integrals int sqrt((a-x)/(x-b))dx

Evaluate the following integrals : int(sec^2x+cos e c^2x)dx