Home
Class 12
MATHS
int {1+2 tan x (tan x + sec x )}^(1//2) ...

`int {1+2 tan x (tan x + sec x )}^(1//2) dx=?`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \sqrt{1 + 2 \tan x (\tan x + \sec x)} \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \sqrt{1 + 2 \tan x (\tan x + \sec x)} \, dx \] ### Step 2: Expand the Expression Inside the Square Root Now, we expand the expression inside the square root: \[ 1 + 2 \tan x (\tan x + \sec x) = 1 + 2 \tan^2 x + 2 \tan x \sec x \] ### Step 3: Substitute \(1\) with \(\sec^2 x - \tan^2 x\) Using the identity \(1 + \tan^2 x = \sec^2 x\), we can rewrite \(1\) as: \[ 1 = \sec^2 x - \tan^2 x \] Thus, we have: \[ \sec^2 x - \tan^2 x + 2 \tan^2 x + 2 \tan x \sec x = \sec^2 x + \tan^2 x + 2 \tan x \sec x \] ### Step 4: Factor the Expression Notice that: \[ \sec^2 x + \tan^2 x + 2 \tan x \sec x = (\sec x + \tan x)^2 \] So we can rewrite the integral as: \[ I = \int \sqrt{(\sec x + \tan x)^2} \, dx \] ### Step 5: Simplify the Integral Since \(\sqrt{(\sec x + \tan x)^2} = |\sec x + \tan x|\), and for \(x\) in the appropriate range, we can drop the absolute value: \[ I = \int (\sec x + \tan x) \, dx \] ### Step 6: Integrate The integral of \(\sec x + \tan x\) is: \[ \int \sec x \, dx + \int \tan x \, dx \] The results are: \[ \int \sec x \, dx = \ln |\sec x + \tan x| + C_1 \] \[ \int \tan x \, dx = -\ln |\cos x| + C_2 \] Thus, combining these results: \[ I = \ln |\sec x + \tan x| - \ln |\cos x| + C \] ### Step 7: Combine Logarithms Using the properties of logarithms, we can combine these: \[ I = \ln \left( \frac{|\sec x + \tan x|}{|\cos x|} \right) + C \] Since \(\sec x = \frac{1}{\cos x}\), we can simplify further: \[ I = \ln \left( \frac{1 + \sin x}{\cos x} \right) + C \] ### Final Answer Thus, the final result for the integral is: \[ I = \ln \left( \sec x + \tan x \right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

intsqrt(1+2 tan x (tan x + sec x ) ) dx

int (1 + tan x )/ (x + log sec x)dx

int tan 2 x tan 3x tan 5x dx = log | sec^(a) 2x. Sec^(b) 3x. Sec^(c) 5x| + k . Then:\

2. int(tan x)/(log sec x)dx

int sec x tan x sqrt(sec^(2) x+1)dx

Evaluate : int sec x tan x sqrt(4 sec^(2) x- 1) dx

If int e^(sec x)(sec x tan x f(x)+(sec x tan x + sec^(2) x))dx = e^(sec x)f(x) + C , then a possible choice of f(x) is

int e^(2x) " (tan x+1)"^(2) dx

int sec x tan x sqrt(tan^(2) x-4) dx

int (dx)/(tan x+ cot x+ sec x+ cosec x)