Home
Class 12
MATHS
int (d ( cos theta))/(sqrt(1-cos^(2) the...

`int (d ( cos theta))/(sqrt(1-cos^(2) theta))`

A

`cos^(-1) theta + c`

B

` theta + c`

C

`sin^(-1) theta + c`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{d(\cos \theta)}{\sqrt{1 - \cos^2 \theta}} \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{d(\cos \theta)}{\sqrt{1 - \cos^2 \theta}} \] Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \), we can rewrite \( \sqrt{1 - \cos^2 \theta} \) as \( \sin \theta \): \[ I = \int \frac{d(\cos \theta)}{\sin \theta} \] ### Step 2: Change of Variable Let \( x = \cos \theta \). Then, the differential \( d(\cos \theta) \) becomes \( dx \): \[ I = \int \frac{dx}{\sqrt{1 - x^2}} \] ### Step 3: Recognize the Integral The integral \( \int \frac{dx}{\sqrt{1 - x^2}} \) is a standard integral that evaluates to: \[ \sin^{-1}(x) + C \] ### Step 4: Substitute Back Now we substitute back \( x = \cos \theta \): \[ I = \sin^{-1}(\cos \theta) + C \] ### Step 5: Simplify the Result Using the identity \( \sin^{-1}(\cos \theta) = \frac{\pi}{2} - \theta \) (since \( \cos \theta = \sin\left(\frac{\pi}{2} - \theta\right) \)): \[ I = \frac{\pi}{2} - \theta + C \] ### Final Result Thus, the final result of the integral is: \[ I = \frac{\pi}{2} - \theta + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

cos theta sqrt(1-sin^(2)theta)=

If (sin^(3)theta-cos^(3)theta)/(sin theta-cos theta)-(cos theta)/(sqrt(1+cot^(2)theta))-2 tan theta cot theta=-1 (AA theta in[0, 2pi], then

(sin^(3) theta-cos^(3) theta)/(sin theta - cos theta)- (cos theta)/sqrt(1+ cot^(2) theta)-2 tan theta cot theta=-1 if

Evaluate : int (2 sin 2 theta- cos theta)/(6 - cos^(2) theta- 4 sin theta) d theta

cos theta=sqrt(1-sin theta)

cos theta=sqrt(1-sin theta)

If pi lt theta lt 2pi then sqrt ((1+cos theta)/(1-cos theta))= a. cosec theta+cot theta , b. cosec theta - cot theta , c. cot theta-cosec theta , d. -cosectheta - cot theta

Evaluate int((2 sin theta + sin 2 theta)d theta)/((cos theta-1)sqrt(cos theta + cos^(2) theta + cos^(3) theta)) .

The value of int((1-cos theta)^((3)/(10)))/((1+cos theta)^((13)/(10))) d theta is equal to (where, c is the constant of integration)

Let u = cot^(-1) sqrt(cos 2 theta) - tan^(-1) sqrt( cos 2 theta) , then the value of sin u is