Home
Class 12
MATHS
If f(x)=int(x^(2)+sin^(2)x)/(1+x^(2))sec...

If `f(x)=int(x^(2)+sin^(2)x)/(1+x^(2))sec^(2)xdx and f(0)=0,` then `f(1)=`

A

`1 - (pi)/(4)`

B

`(pi)/(4) -1`

C

`tan 1- (pi)/(4)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral given by the function \( f(x) \) and then find \( f(1) \) given that \( f(0) = 0 \). ### Step-by-step Solution: 1. **Write down the function:** \[ f(x) = \int \frac{x^2 + \sin^2 x}{1 + x^2} \sec^2 x \, dx \] 2. **Substitute \( \sin^2 x \):** We know that \( \sin^2 x = 1 - \cos^2 x \). So we can rewrite the integral: \[ f(x) = \int \frac{x^2 + (1 - \cos^2 x)}{1 + x^2} \sec^2 x \, dx \] This simplifies to: \[ f(x) = \int \frac{x^2 + 1 - \cos^2 x}{1 + x^2} \sec^2 x \, dx \] 3. **Split the integral:** We can separate the integral into two parts: \[ f(x) = \int \frac{x^2 + 1}{1 + x^2} \sec^2 x \, dx - \int \frac{\cos^2 x}{1 + x^2} \sec^2 x \, dx \] The first part simplifies since \( \sec^2 x = \frac{1}{\cos^2 x} \): \[ f(x) = \int \sec^2 x \, dx - \int \frac{\cos^2 x}{1 + x^2} \sec^2 x \, dx \] 4. **Integrate the first term:** The integral of \( \sec^2 x \) is: \[ \int \sec^2 x \, dx = \tan x + C \] 5. **Evaluate the second integral:** The second integral can be simplified: \[ \int \frac{\cos^2 x}{1 + x^2} \sec^2 x \, dx = \int \frac{1}{1 + x^2} \, dx = \tan^{-1}(x) + C \] 6. **Combine the results:** Thus, we have: \[ f(x) = \tan x - \tan^{-1}(x) + C \] 7. **Use the condition \( f(0) = 0 \):** Evaluating at \( x = 0 \): \[ f(0) = \tan(0) - \tan^{-1}(0) + C = 0 - 0 + C = C \] Since \( f(0) = 0 \), we find \( C = 0 \). 8. **Final expression for \( f(x) \):** Therefore, we have: \[ f(x) = \tan x - \tan^{-1}(x) \] 9. **Evaluate \( f(1) \):** Now we calculate \( f(1) \): \[ f(1) = \tan(1) - \tan^{-1}(1) \] We know \( \tan^{-1}(1) = \frac{\pi}{4} \): \[ f(1) = \tan(1) - \frac{\pi}{4} \] 10. **Final result:** Thus, the final answer is: \[ f(1) = \tan(1) - \frac{\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=int x^2/((1+x^2)(1+sqrt(1+x^2)))dx and f(0)=0 then f(1) is

If f(x)=int(3x^4-1)/(x^4+x+1)^2dx and f(0)=0 , then f(-1)= …

If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0 then the value of f(1) is

If f'(x)=(1)/((1+x^(2))^(3//2)) and f(0)=0, then f(1) is equal to :

If f(x) = int(5x^(8)+7x^(6))/((x^(2)+1+2x^(7))^(2))dx, (x ge 0) , and f(0) = 0, then the value of f(1) is

If f''(x) = sec^(2) x and f (0) = f '(0) = 0 then:

If f'(x) = f(x)+ int _(0)^(1)f (x) dx and given f (0) =1, then int f (x) dx is equal to :

If f'(x)=f(x)+ int_(0)^(1)f(x)dx , given f(0)=1 , then the value of f(log_(e)2) is

If f(x)=int_a^x[f(x)]^(-1)dx and int_a^1[f(x)]^(-1)dx=sqrt(2) , then

If f'(x) = tan^(-1)(Sec x + tan x), x in (-pi/2 , pi/2) and f(0) = 0 then the value of f(1) is