Home
Class 12
MATHS
Integral of (1)/(1+(logx)^(2)) w.r.t. (l...

Integral of `(1)/(1+(logx)^(2))` w.r.t. `(logx)` is

A

`(tan^(-1) (log x))/(x) + C`

B

`tan^(-1)(log x)+C`

C

`(tan^(-1) + x)/(x)+c`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

Integrate the functions ((logx)^2)/x

Integrate the functions ((1+logx)^2)/x

Integrate the functions x(logx)^2

int(logx/(1+logx)^2)dx

Differential coefficient of log_10 x w.r.t log_x 10 is

The integration of logx.

Evaluate int(logx)/((1+logx)^(2))dx .

Integrate the functions 1/(x(logx)^m), x >0

Integrate the functions 1/(x(logx)^m), x >0

The integral int_(2)^(4)(logx^(2))/(logx^(2)+log(36-12x+x^(2))) dx is equal to