Home
Class 12
MATHS
If int (2^(1//x))/(x^(2))dx= k.2^(1//x) ...

If `int (2^(1//x))/(x^(2))dx= k.2^(1//x)` , then k is equal to :

A

`(-1)/(log 2)`

B

`- log 2`

C

`-1`

D

`(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{2^{\frac{1}{x}}}{x^2} \, dx = k \cdot 2^{\frac{1}{x}} \), we will follow these steps: ### Step 1: Substitution Let \( t = \frac{1}{x} \). Then, we have: \[ x = \frac{1}{t} \quad \text{and} \quad dx = -\frac{1}{t^2} \, dt \] ### Step 2: Change the integral Substituting \( x \) and \( dx \) into the integral: \[ \int \frac{2^{\frac{1}{x}}}{x^2} \, dx = \int \frac{2^t}{\left(\frac{1}{t}\right)^2} \left(-\frac{1}{t^2}\right) \, dt \] This simplifies to: \[ \int 2^t \cdot t^2 \cdot \left(-\frac{1}{t^2}\right) \, dt = -\int 2^t \, dt \] ### Step 3: Integrate Now we can integrate \( -\int 2^t \, dt \): \[ -\int 2^t \, dt = -\frac{2^t}{\log 2} + C \] ### Step 4: Substitute back Now, substituting back \( t = \frac{1}{x} \): \[ -\frac{2^{\frac{1}{x}}}{\log 2} + C \] ### Step 5: Compare with the given equation We have: \[ \int \frac{2^{\frac{1}{x}}}{x^2} \, dx = -\frac{2^{\frac{1}{x}}}{\log 2} + C \] According to the problem, this equals \( k \cdot 2^{\frac{1}{x}} \). Therefore, we can compare: \[ k \cdot 2^{\frac{1}{x}} = -\frac{2^{\frac{1}{x}}}{\log 2} \] ### Step 6: Solve for \( k \) Dividing both sides by \( 2^{\frac{1}{x}} \) (assuming \( 2^{\frac{1}{x}} \neq 0 \)): \[ k = -\frac{1}{\log 2} \] ### Conclusion Thus, the value of \( k \) is: \[ k = -\frac{1}{\log 2} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

If int(2^(1setminusx))/(x^2)\ dx=k\ 2^(1setminusx)+C , then k is equal to -1/((log)_e2) (b) (log)_e2 (c) -1 (d) 1/2

If int_(0)^(k) ( 1)/(9x^(2) + 1) dx = ( pi )/( 12) , then k is equal to

If x^(2)+y^(2)=a^(2)" and "k=1//a then k is equal to

The intergral int x cos^(-1) ((1-x^(2))/(1+x^(2))) dx, (x gt 0) is equal to

int_(0)^(1//2)(1)/(1-x^(2))ln.(1-x)/(1+x)dx is equal to

If int(1+xcosx)/(x(1-x^(2)e^(2sinx)))dx = k" ln "sqrt((x^(2)e^(2 sinx))/(1-x^(2)e^(2sinx)))+C then k is equal to:

int(2^x)/(sqrt(1-4^x))dx=ksin^(- 1)2^x+c , then k =

int((1+x+x^(2))/( 1+x^(2))) e^(tan^(-1)x) dx is equal to

int(x^(3))/((1+x^(2))^(1//3))dx is equal to

If (1)/(1^(2))+(1)/(2^(2))+(1)/(3^(2))+(1)/(4^(2))+……+ oo=(pi^(2))/(6) and int_(0)^(1)(ln (l+x))/(x)dx=(3pi^(2))/(k) then k equals :