Home
Class 12
MATHS
If intsec2xdx=f{g(x)}+c, then...

If `intsec2xdx=f{g(x)}+c`, then

A

`f(x) = log |x|, g(x) = tan ((x)/(4) -x)`

B

`f(x) = log |x|, g(x) = cot((x)/(4) -x)`

C

`f(x) = (1)/(2) log |x|, g(x) = tan ((x)/(4) -x)`

D

`f(x) = (1)/(2) log |x| , g(x) = cot((pi)/(4) -x)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

If intsec2x dx=f{g(x)}+c then

If intsinx d(secx)=f(x)-g(x)+c ,t h e n f(x)=secx (b) f(x)=tanx g(x)=2x (d) g(x)=x

solve intsec^(2)4xdx

intsec^(2) (1-5x) dx

Evaluate: (i) intsec^4 2x\ dx (ii) intcos e c^4\ 3x\ dx

intsec^(7/2)xtanxdx

Evaluate intsec^2x\dx

If f(x)=int(x^(2)+sin^(2)x)/(1+x^(2))sec^(2)xdx and f(0)=0, then f(1)=

If f(x)=int(x^(2)+sin^(2)x)/(1+x^(2))sec^(2)xdx and f(0)=0, then f(1)=

Let f : R to R be differentiable at c in R and f(c ) = 0 . If g(x) = |f(x) |, then at x = c, g is