Home
Class 12
MATHS
If int (2^(x))/(sqrt(1-4^(x))) dx = k s...

If ` int (2^(x))/(sqrt(1-4^(x))) dx = k sin ^(-1) (f(x)) + C` then :

A

` k = log 2, f(x) = 2^(x)`

B

`k = (1)/(log 2) , f(x) = 2^(x)`

C

`k = log 2, f(x) = 4^(x)`

D

`k = (1)/(log2) , f(x) = 4^(x)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

If int( 2^(x))/( sqrt( 1- 4^(x))) dx = k sin^(-1) ( 2^(x)) + C , then the value of k is

STATEMENT-1 : If int(2^(x))/(sqrt(1-4^(x)))=ksin^(-1)(2^(x)) , then k equals (1)/(log2) . STATEMENT-2 : If intf(x)dx=-f(x)+c , then f(log_(e)2)=(1)/(2) STATEMENT-3 : int(e^(x))/(sqrt(1+e^(x)))dx=-2sqrt(1+e^(x))+c

int (x) /(sqrt(1+x^(4)) ) dx

int(2^x)/(sqrt(1-4^x))dx=ksin^(- 1)2^x+c , then k =

int(xsin^(-1)x^(2))/(sqrt(1-x^(4)))dx

int(1)/(sqrt(4x^(2)-x+4))dx

int_((x sin^(-1)x)/(sqrt(1-x)^(2)))dx

prove that int(dx)/(sqrt(1-x^(2)))=sin^(-1)x+c

If int(xe^(x))/(sqrt(1+e^(x)))dx=f(x)sqrt(1+e^(x))-2logg(x)+C , then

int(1)/(sqrt(1-sin x))dx