Home
Class 12
MATHS
int 5^(5^(5^x))*5^(5^x)*5^x *dx...

`int 5^(5^(5^x))*5^(5^x)*5^x *dx`

A

`(5^(5x))/((log 5)^(3)) + c`

B

`5^(5^(5x))(log 5)^(3) + C`

C

`(5^(5^(5x)))/((log 5)^(3))+c`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int 5^{5^{5^x}} \cdot 5^{5^x} \cdot 5^x \, dx \), we will use substitution and properties of exponents. Here’s a step-by-step solution: ### Step 1: Simplify the Integral We can combine the exponents in the integrand: \[ I = \int 5^{5^{5^x} + 5^{x} + x} \, dx \] ### Step 2: Use Substitution Let’s make a substitution to simplify our integral. We can set: \[ t = 5^{5^x} \] Now, we need to find \( dt \): \[ dt = 5^{5^x} \cdot \ln(5) \cdot 5^x \, dx \] This implies: \[ dx = \frac{dt}{5^{5^x} \cdot \ln(5) \cdot 5^x} \] ### Step 3: Rewrite the Integral in Terms of \( t \) Substituting \( t \) into the integral, we have: \[ I = \int t \cdot \frac{dt}{\ln(5) \cdot 5^x \cdot 5^{5^x}} \] Notice that \( 5^x = 5^{\log_5(t)} = t^{\log_5(5)} = t \) and \( 5^{5^x} = t \). Therefore, we can rewrite the integral as: \[ I = \int \frac{t^2}{\ln(5)} \cdot dt \] ### Step 4: Integrate Now we can integrate: \[ I = \frac{1}{\ln(5)} \cdot \frac{t^3}{3} + C \] \[ I = \frac{t^3}{3 \ln(5)} + C \] ### Step 5: Substitute Back for \( t \) Now, we substitute back for \( t \): \[ t = 5^{5^x} \] Thus, we have: \[ I = \frac{(5^{5^x})^3}{3 \ln(5)} + C \] \[ I = \frac{5^{3 \cdot 5^x}}{3 \ln(5)} + C \] ### Final Answer The final result for the integral is: \[ I = \frac{5^{3 \cdot 5^x}}{3 \ln(5)} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int5^5^5^x5^5^x5^xdx

int x^(5/3)dx

int 5^(2x)dx

(5) int(2^(x)+3^(x))/(5^x)dx

int e^(4x-5)dx

Evaluate int(5^(x))/(sqrt(5^(-2x)-5^(2x)))dx=

int (7-2x)^5 dx

int (7-2x)^5 dx

int 5/(1+x^4)dx

int_- 5^5|x+2|dx