Home
Class 12
MATHS
If int f(x) dx = 2 cos sqrt(x) + c, then...

If `int f(x) dx = 2 cos sqrt(x) + c`, then f(x) =

A

`sin sqrt(x)`

B

`-(sin sqrt(x))/(sqrt(x))`

C

`2 cos sqrt(x)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f(x) \) given that \[ \int f(x) \, dx = 2 \cos(\sqrt{x}) + c, \] we need to differentiate the right-hand side with respect to \( x \). ### Step 1: Differentiate the given integral We start by differentiating both sides: \[ f(x) = \frac{d}{dx} \left( 2 \cos(\sqrt{x}) + c \right). \] ### Step 2: Apply the chain rule Using the chain rule for differentiation, we differentiate \( 2 \cos(\sqrt{x}) \): \[ f(x) = 2 \cdot \frac{d}{dx} \left( \cos(\sqrt{x}) \right). \] Now, we apply the chain rule: \[ \frac{d}{dx} \left( \cos(\sqrt{x}) \right) = -\sin(\sqrt{x}) \cdot \frac{d}{dx}(\sqrt{x}). \] ### Step 3: Differentiate \( \sqrt{x} \) The derivative of \( \sqrt{x} \) is: \[ \frac{d}{dx}(\sqrt{x}) = \frac{1}{2\sqrt{x}}. \] ### Step 4: Substitute back into the equation Now substituting this back into our expression for \( f(x) \): \[ f(x) = 2 \cdot \left( -\sin(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}} \right). \] ### Step 5: Simplify the expression This simplifies to: \[ f(x) = -\frac{\sin(\sqrt{x})}{\sqrt{x}}. \] ### Final Result Thus, we have: \[ f(x) = -\frac{\sin(\sqrt{x})}{\sqrt{x}}. \] ### Conclusion Now, we can check the options provided. The correct option matches with: \[ \text{Option 2: } -\frac{\sin(\sqrt{x})}{\sqrt{x}}. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

If intf(x)cos x dx = 1/2 f^(2)(x)+C , then f(x) can be

If intf(x)cos x dx = 1/2 f^(2)(x)+C , then f(x) can be

If int(1)/(x^(2)+2x+2)dx=f (x) +C , then f (x)=

STATEMENT-1 : If int(1)/(f(x))dx=2log|f(x)|+c , then f(x)=(x)/(2) . STATEMENT-2 : When f(x)=(x)/(2) , then int(1)/(f(x))dx=int(2)/(x)dx=2log|x|+c STATEMENT-3 : inte^(x^(2))dx=e^(x^(2))+c

If | int_a ^b f(x) dx| = int_a ^b |f(x)| dx, a lt b , then f(x) = 0 has

If int f(x)dx=F(x), then intx^3f(x^2)dx is equal to :

If int f(x)dx=psi(x) , then int x^5f(x^3)dx

f(x) = int(x^(2)+x+1)/(x+1+sqrt(x))dx , then f(1) =

Let F(x) =int_(a)^(x^(2)) cos sqrt(t)dt Statement-1: F'(x)=cos x Statement-2: If f(x) =int_(a)^(x) phi(t) dt , then f'(x)= phi (x).

If int f(x)dx = F(x), f(x) is a continuous function,then int (f(x))/(F(x))dx equals