Home
Class 12
MATHS
int(sinxcosx)/(sqrt(1-sin^(4)x)dx is equ...

`int(sinxcosx)/(sqrt(1-sin^(4)x)dx` is equal to

A

`(1)/(2) sin^(-1) (sin^2 x)+C`

B

`-(1)/(2)cos^(-1)(sin^(2)x)+C`

C

`tan^(-1)(sin^(2)x) + C`

D

`cot^(-1) (sin x)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\sin x \cos x}{\sqrt{1 - \sin^4 x}} \, dx \), we can follow these steps: ### Step 1: Substitution Let \( t = \sin^2 x \). Then, we differentiate \( t \): \[ dt = 2 \sin x \cos x \, dx \quad \Rightarrow \quad dx = \frac{dt}{2 \sin x \cos x} \] ### Step 2: Rewrite the Integral Now we can substitute \( t \) and \( dx \) into the integral: \[ \int \frac{\sin x \cos x}{\sqrt{1 - \sin^4 x}} \, dx = \int \frac{\sin x \cos x}{\sqrt{1 - t^2}} \cdot \frac{dt}{2 \sin x \cos x} \] The \( \sin x \cos x \) terms cancel out: \[ = \frac{1}{2} \int \frac{dt}{\sqrt{1 - t^2}} \] ### Step 3: Integrate The integral \( \int \frac{dt}{\sqrt{1 - t^2}} \) is a standard integral that equals \( \sin^{-1}(t) \): \[ = \frac{1}{2} \sin^{-1}(t) + C \] ### Step 4: Substitute Back Now substitute back \( t = \sin^2 x \): \[ = \frac{1}{2} \sin^{-1}(\sin^2 x) + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{\sin x \cos x}{\sqrt{1 - \sin^4 x}} \, dx = \frac{1}{2} \sin^{-1}(\sin^2 x) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

The value of int(sinx-cosx)/(sqrt(sin2x)dx is equal to

int (cosx)/(sqrt(4-sin^2x)) dx

int(tanx)/(sqrt(sin^(4)x+cos^(4)x))dx is equal to

int sqrt(e^(x)-1)dx is equal to

int(sinx-cosx)/(sqrt(1-sin2x))e^(sinx)cosx dx is equal to

int(sin^(4)x)/(sin^(4)x+cos^(4)x)dx is equal to

int(1)/(1+3 sin ^(2)x)dx is equal to

int(sinxcosx)/(sin^4x+cos^4x)dx

int(1)/(sqrt(1-sin x))dx

int(1+x)/(1+3sqrt(x))dx is equal to