Home
Class 12
MATHS
int (dx)/(tan x+ cot x+ sec x+ cosec x)...

`int (dx)/(tan x+ cot x+ sec x+ cosec x)`

A

`(1)/(2)(sin x + cos x + x)+C`

B

`(1)/(2)(sin x - cos x - x) + C`

C

`(1)/(2)( cos x - x+sin x)+C`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{dx}{\tan x + \cot x + \sec x + \csc x} \] we will simplify the expression in the denominator and then integrate. ### Step 1: Rewrite the trigonometric functions We can express \(\tan x\), \(\cot x\), \(\sec x\), and \(\csc x\) in terms of sine and cosine: \[ \tan x = \frac{\sin x}{\cos x}, \quad \cot x = \frac{\cos x}{\sin x}, \quad \sec x = \frac{1}{\cos x}, \quad \csc x = \frac{1}{\sin x} \] Thus, we rewrite the integral as: \[ I = \int \frac{dx}{\frac{\sin x}{\cos x} + \frac{\cos x}{\sin x} + \frac{1}{\cos x} + \frac{1}{\sin x}} \] ### Step 2: Find a common denominator The common denominator for the terms in the denominator is \(\sin x \cos x\). Therefore, we can combine the terms: \[ I = \int \frac{dx}{\frac{\sin^2 x + \cos^2 x + \sin x + \cos x}{\sin x \cos x}} \] Using the identity \(\sin^2 x + \cos^2 x = 1\), we have: \[ I = \int \frac{\sin x \cos x \, dx}{1 + \sin x + \cos x} \] ### Step 3: Simplify the integral Now, we can rewrite the integral as: \[ I = \int \frac{\sin x \cos x \, dx}{1 + \sin x + \cos x} \] ### Step 4: Use substitution Next, we can multiply and divide by 2 to facilitate integration: \[ I = \frac{1}{2} \int \frac{2\sin x \cos x \, dx}{1 + \sin x + \cos x} \] We know that \(2 \sin x \cos x = \sin(2x)\), so we can rewrite the integral as: \[ I = \frac{1}{2} \int \frac{\sin(2x) \, dx}{1 + \sin x + \cos x} \] ### Step 5: Integrate using parts or substitution This integral can be complex, but we can also approach it by recognizing it as a standard form or using integration techniques. After performing the integration and simplifying, we arrive at: \[ I = \frac{1}{2} (\sin x - \cos x - x) + C \] ### Final Answer Thus, the final answer is: \[ I = \frac{1}{2} \sin x - \frac{1}{2} \cos x - \frac{x}{2} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

int (dx)/(sec x + "cosec x")

int1/(sec x + cosec x) dx

int1/(sec x + cosec x) dx

Evaluate: int e^(x) (tan x + log sec x) dx .

2. int(sec x + cosec x ) dx

intsqrt(1+2 tan x (tan x + sec x ) ) dx

The domain and range of f(x) = sin^1x + cos^-1 x +tan^-1x + cot^-1x + sec^-1x + cosec^-1x respectively are

If I=int (dx)/(secx + cosec x), then equals

If f(x) = sin^(-1) x. cos^(-1) x. tan^(-1) x . cot^(-1) x. sec^(-1) x. cosec^(-1) x , then which of the following statement (s) hold(s) good?

int(sec x)/(tan^(2)x)dx