Home
Class 12
MATHS
Evaluate the following Integrals. int...

Evaluate the following Integrals.
`int(12)/(13) - (5)/(13) (-3 sin x + 2 cos x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \left( \frac{12}{13} - \frac{5}{13}(-3 \sin x + 2 \cos x) \right) dx, \] we can break it down into simpler parts. ### Step 1: Split the Integral We can rewrite the integral by distributing the terms: \[ I = \int \frac{12}{13} \, dx - \frac{5}{13} \int (-3 \sin x + 2 \cos x) \, dx. \] ### Step 2: Integrate the Constant Term The integral of a constant \( \frac{12}{13} \) is: \[ \int \frac{12}{13} \, dx = \frac{12}{13} x. \] ### Step 3: Integrate the Sine and Cosine Terms Next, we need to integrate the sine and cosine terms. We can split this into two separate integrals: \[ I = \frac{12}{13} x - \frac{5}{13} \left( \int -3 \sin x \, dx + \int 2 \cos x \, dx \right). \] Now, we compute each integral: 1. For \( \int -3 \sin x \, dx \): \[ \int -3 \sin x \, dx = -3 \left( -\cos x \right) = 3 \cos x. \] 2. For \( \int 2 \cos x \, dx \): \[ \int 2 \cos x \, dx = 2 \sin x. \] ### Step 4: Combine the Results Now we can substitute these results back into our expression for \( I \): \[ I = \frac{12}{13} x - \frac{5}{13} \left( 3 \cos x + 2 \sin x \right). \] ### Step 5: Distribute the Coefficient Distributing \( -\frac{5}{13} \): \[ I = \frac{12}{13} x - \frac{5}{13} \cdot 3 \cos x - \frac{5}{13} \cdot 2 \sin x. \] This simplifies to: \[ I = \frac{12}{13} x - \frac{15}{13} \cos x - \frac{10}{13} \sin x + C, \] where \( C \) is the constant of integration. ### Final Answer Thus, the final result for the integral is: \[ I = \frac{12}{13} x - \frac{15}{13} \cos x - \frac{10}{13} \sin x + C. \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals : int1/(1+cos2x)dx

Evaluate the following Integrals. int (cos x)/(1+sin x) dx

Evaluate the following Integrals : int (dx)/(sin x(3+cos x))

Evaluate the following integrals int (dx)/(1+sin x+cos x)

Evaluate the following integrals : int(sin^2x)/(1+cosx)dx

Evaluate the following integrals : int(1-cos2x)/(1+cos2x)dx

Evaluate the following integration int cos^(3)x dx

Evaluate the following integrals. int (dx)/(x cos^(2) (log x))

Evaluate the following integral: int_0^(2pi)|sin x|dx

Evaluate the following integrals : int_0^(3.)(2x^2+3x+5)dx