Home
Class 12
MATHS
Evaluate the following Integrals. int...

Evaluate the following Integrals.
`int (dx)/(cos x (sin x + 2 cosx))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int \frac{dx}{\cos x (\sin x + 2 \cos x)} \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{dx}{\cos x (\sin x + 2 \cos x)} \] To simplify, we divide both the numerator and the denominator by \(\cos^2 x\): \[ I = \int \frac{1}{\cos^2 x} \cdot \frac{1}{\frac{\sin x}{\cos x} + 2} \, dx \] ### Step 2: Simplify the Integral Using the identity \(\frac{1}{\cos^2 x} = \sec^2 x\) and \(\frac{\sin x}{\cos x} = \tan x\), we can rewrite the integral: \[ I = \int \sec^2 x \cdot \frac{1}{\tan x + 2} \, dx \] ### Step 3: Substitution Now, we will use the substitution \(t = \tan x + 2\). Then, the derivative of \(\tan x\) is \(\sec^2 x\), which gives us: \[ dt = \sec^2 x \, dx \quad \Rightarrow \quad dx = \frac{dt}{\sec^2 x} \] Substituting these into the integral, we get: \[ I = \int \frac{1}{t} \, dt \] ### Step 4: Integrate The integral of \(\frac{1}{t}\) is: \[ I = \log |t| + C \] Substituting back for \(t\): \[ I = \log |\tan x + 2| + C \] ### Final Answer Thus, the final result of the integral is: \[ I = \log (\tan x + 2) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following Integrals : int (dx)/(sin x(3+cos x))

Evaluate the following Integrals. int (cos x)/(1+sin x) dx

Evaluate the following integrals int (dx)/(1+sin x+cos x)

Evaluate the following Integrals. int (dx)/((2 sin x+ 3 cos x)^(2))

Evaluate the following integrals. int sin x cos x (sin 2x + cos 2x) dx

Evaluate the following integrals. int (dx)/(x cos^(2) (log x))

Evaluate the following Integrals. int (dx)/(4sin^(2)x + 4 sin x cos x + 5 cos^(2) x)

Evaluate the following integrals. int (sinx + cos x)/((sin x - cos x)^(3))dx

Evaluate the following integrals : int1/(1+cos2x)dx

Evaluate the following integrals : int(sin^2x)/(1+cosx)dx