Home
Class 12
MATHS
Evaluate ∫ sec x ⋅ tan x ⋅ d x...

Evaluate ∫ sec x ⋅ tan x ⋅ d x

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \sec x \cdot \tan x \, dx \), we can follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ I = \int \sec x \cdot \tan x \, dx \] ### Step 2: Use substitution Recall that: \[ \sec x = \frac{1}{\cos x} \quad \text{and} \quad \tan x = \frac{\sin x}{\cos x} \] Thus, we can rewrite the integral as: \[ I = \int \frac{\sin x}{\cos^2 x} \, dx \] ### Step 3: Choose a substitution Let: \[ t = \cos x \] Then, differentiating both sides gives: \[ dt = -\sin x \, dx \quad \Rightarrow \quad \sin x \, dx = -dt \] ### Step 4: Substitute in the integral Substituting \( t \) into the integral, we have: \[ I = \int \frac{-dt}{t^2} \] ### Step 5: Integrate Now, we can integrate: \[ I = -\int t^{-2} \, dt = -\left( -\frac{1}{t} \right) + C = \frac{1}{t} + C \] ### Step 6: Substitute back for \( t \) Recalling that \( t = \cos x \), we substitute back: \[ I = \frac{1}{\cos x} + C \] ### Step 7: Final answer Since \( \frac{1}{\cos x} = \sec x \), we can write the final answer as: \[ I = \sec x + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

int x sec x*tan xdx

Evaluate : int (" sec x + tan x")/(" sec x- tan x") " dx "

Evaluate : int sec x tan x sqrt(4 sec^(2) x- 1) dx

Evaluate int(sec^2xtanx)/(sec^2x+tan^2x)dx

Evaluate: int(sec^2x)/(1-tan^2x)dx

Evaluate: int(sec^2x)/(1-tan^2x)\ dx

int x^3 (sec^2x-tan^2x)dx

Evaluate: int e^(x) (tan x + log sec x) dx .

int sec x ln(sec x+tan x)dx=

Evaluate: int(sec^2x)/(sqrt(tan^2x+4))dx