Home
Class 12
MATHS
Evaluate the following integrals: int(...

Evaluate the following integrals:
`int((x+1))/((x+2)^(2))e^(x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{x+1}{(x+2)^2} e^x \, dx, \] we can start by rewriting the integrand. ### Step 1: Rewrite the integrand We can express \(x + 1\) in terms of \(x + 2\): \[ x + 1 = (x + 2) - 1. \] Thus, we can rewrite the integral as: \[ I = \int \frac{(x + 2) - 1}{(x + 2)^2} e^x \, dx = \int \left( \frac{1}{x + 2} - \frac{1}{(x + 2)^2} \right) e^x \, dx. \] ### Step 2: Split the integral Now we can split the integral into two parts: \[ I = \int \frac{1}{x + 2} e^x \, dx - \int \frac{1}{(x + 2)^2} e^x \, dx. \] Let’s denote these two integrals as \(I_1\) and \(I_2\): \[ I_1 = \int \frac{1}{x + 2} e^x \, dx, \] \[ I_2 = \int \frac{1}{(x + 2)^2} e^x \, dx. \] ### Step 3: Solve \(I_1\) To solve \(I_1\), we can use integration by parts. Let: - \(u = \frac{1}{x + 2}\) so that \(du = -\frac{1}{(x + 2)^2} \, dx\), - \(dv = e^x \, dx\) so that \(v = e^x\). Using integration by parts: \[ I_1 = uv - \int v \, du = \frac{1}{x + 2} e^x - \int e^x \left(-\frac{1}{(x + 2)^2}\right) \, dx. \] This gives us: \[ I_1 = \frac{e^x}{x + 2} + I_2. \] ### Step 4: Substitute back into the expression for \(I\) Now substituting \(I_1\) back into the expression for \(I\): \[ I = \left(\frac{e^x}{x + 2} + I_2\right) - I_2 = \frac{e^x}{x + 2}. \] ### Step 5: Final result Thus, the final result for the integral is: \[ I = \frac{e^x}{x + 2} + C, \] where \(C\) is the constant of integration.
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following Integrals : int(tan^(-1)x)/(x^(2))dx

Evaluate the following integrals: int(e^x-1)/(e^x+1)dx

Evaluate the following integrals int_1^3(2x+3)dx

Evaluate the following integrals : int_0^2(x^2+x)dx

Evaluate the following integral: int_(-2)^2|x+1|dx

Evaluate the following integrals : int1/(1+cos2x)dx

Evaluate the following integrals : int((x^3+8)(x-1))/(x^2-2x+4)dx

Evaluate the following Integrals : int (x^(2))/((x-1)(x-2)(x-3))dx

Evaluate the following integral: int_1^2(x+3)/(x(x+2))dx

Evaluate the following integral: int_1^2(3x)/(9x^2-1)dx