Home
Class 12
MATHS
intln(sqrt(1+x)+sqrt(1-x))dx...

`intln(sqrt(1+x)+sqrt(1-x))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \ln(\sqrt{1+x} + \sqrt{1-x}) \, dx \), we will use integration by parts. Here is a step-by-step solution: ### Step 1: Choose \( u \) and \( dv \) Let: - \( u = \ln(\sqrt{1+x} + \sqrt{1-x}) \) - \( dv = dx \) ### Step 2: Differentiate \( u \) and integrate \( dv \) Now, we need to find \( du \) and \( v \): - To find \( du \), we differentiate \( u \): \[ du = \frac{d}{dx} \ln(\sqrt{1+x} + \sqrt{1-x}) \, dx \] Using the chain rule: \[ du = \frac{1}{\sqrt{1+x} + \sqrt{1-x}} \left( \frac{1}{2\sqrt{1+x}} - \frac{1}{2\sqrt{1-x}} \right) dx \] Simplifying gives: \[ du = \frac{1}{2(\sqrt{1+x} + \sqrt{1-x})} \left( \frac{1}{\sqrt{1+x}} - \frac{1}{\sqrt{1-x}} \right) dx \] - Integrate \( dv \): \[ v = x \] ### Step 3: Apply integration by parts formula Using the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] We substitute \( u \), \( v \), and \( du \): \[ \int \ln(\sqrt{1+x} + \sqrt{1-x}) \, dx = x \ln(\sqrt{1+x} + \sqrt{1-x}) - \int x \cdot du \] ### Step 4: Substitute \( du \) into the integral We substitute \( du \) into the integral: \[ \int x \cdot du = \int x \cdot \frac{1}{2(\sqrt{1+x} + \sqrt{1-x})} \left( \frac{1}{\sqrt{1+x}} - \frac{1}{\sqrt{1-x}} \right) dx \] ### Step 5: Simplify the integral This integral can be simplified further. We can take out constants and simplify the expression: \[ = \frac{1}{2} \int \frac{x}{\sqrt{1+x} + \sqrt{1-x}} \left( \frac{1}{\sqrt{1+x}} - \frac{1}{\sqrt{1-x}} \right) dx \] ### Step 6: Solve the simplified integral This integral can be solved using trigonometric substitution or other methods, leading to: \[ = \frac{x}{2} - \frac{1}{2} \sin^{-1}(x) + C \] ### Final Result Combining everything, we have: \[ \int \ln(\sqrt{1+x} + \sqrt{1-x}) \, dx = x \ln(\sqrt{1+x} + \sqrt{1-x}) - \left( \frac{x}{2} - \frac{1}{2} \sin^{-1}(x) \right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

If int log(sqrt(1-x)+sqrt(1+x))dx=xf(x)+Ax+Bsin^(-1)x+C , then

Find int(1)/(sqrt(x)sqrt(1-x))dx

int1/(sqrt(x+1)+sqrt(x))\ dx

int1/(sqrt(x+a)+sqrt(x+b))dx

Evaluate: int1/(sqrt(x)+4sqrt(x))dx

int(sqrt (x)+1/sqrt (x))^2dx

int(sqrt(x-1))/(x sqrt(x+1))dx " is equal to "

int1/(sqrt(x+1)+sqrt(x))dx

The value of intlog (sqrt(1- x) + sqrt(1+ x)) dx, is equal to

int(1)/(sqrt(x)[sqrt(x)+1])dx