Home
Class 12
MATHS
int (0)^(pi//4) [ sqrt(tan x)+ sqrt(cot ...

` int _(0)^(pi//4) [ sqrt(tan x)+ sqrt(cot x)] ` dx is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^{\frac{\pi}{4}} \left( \sqrt{\tan x} + \sqrt{\cot x} \right) \, dx \), we can follow these steps: ### Step 1: Rewrite the integral We can express \(\tan x\) and \(\cot x\) in terms of sine and cosine: \[ I = \int_0^{\frac{\pi}{4}} \left( \sqrt{\frac{\sin x}{\cos x}} + \sqrt{\frac{\cos x}{\sin x}} \right) \, dx \] ### Step 2: Combine the terms under a common denominator We can combine the two square root terms: \[ I = \int_0^{\frac{\pi}{4}} \left( \frac{\sqrt{\sin x}}{\sqrt{\cos x}} + \frac{\sqrt{\cos x}}{\sqrt{\sin x}} \right) \, dx \] This can be rewritten as: \[ I = \int_0^{\frac{\pi}{4}} \left( \frac{\sin x + \cos x}{\sqrt{\sin x \cos x}} \right) \, dx \] ### Step 3: Use the identity for \(\sin x + \cos x\) We know that \(\sin x + \cos x = \sqrt{2} \sin\left(x + \frac{\pi}{4}\right)\). Thus: \[ I = \int_0^{\frac{\pi}{4}} \frac{\sqrt{2} \sin\left(x + \frac{\pi}{4}\right)}{\sqrt{\sin x \cos x}} \, dx \] ### Step 4: Change of variable Let \( u = \frac{\pi}{4} - x \), then \( du = -dx \). The limits change as follows: - When \( x = 0 \), \( u = \frac{\pi}{4} \) - When \( x = \frac{\pi}{4} \), \( u = 0 \) Thus, we can rewrite the integral: \[ I = \int_{\frac{\pi}{4}}^0 \left( \sqrt{\tan\left(\frac{\pi}{4} - u\right)} + \sqrt{\cot\left(\frac{\pi}{4} - u\right)} \right)(-du) \] This simplifies to: \[ I = \int_0^{\frac{\pi}{4}} \left( \sqrt{\cot u} + \sqrt{\tan u} \right) \, du \] ### Step 5: Combine both integrals Notice that: \[ I = \int_0^{\frac{\pi}{4}} \left( \sqrt{\tan x} + \sqrt{\cot x} \right) \, dx = \int_0^{\frac{\pi}{4}} \left( \sqrt{\cot x} + \sqrt{\tan x} \right) \, dx \] Thus, we can write: \[ 2I = \int_0^{\frac{\pi}{4}} \left( \sqrt{\tan x} + \sqrt{\cot x} + \sqrt{\cot x} + \sqrt{\tan x} \right) \, dx = \int_0^{\frac{\pi}{4}} \left( \sqrt{\tan x} + \sqrt{\cot x} \right) \, dx \] This means: \[ 2I = \int_0^{\frac{\pi}{4}} 2 \, dx = 2 \cdot \frac{\pi}{4} = \frac{\pi}{2} \] ### Step 6: Solve for \(I\) Dividing both sides by 2: \[ I = \frac{\pi}{4} \] ### Final Answer Thus, the value of the integral is: \[ \boxed{\frac{\pi}{4}} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

int_0^(pi//2) x(sqrt(tan x)+sqrt(cot x))dx equals

int_(0)^(pi//6) sqrt(1-sin 2x) dx

If int_(0)^(pi//4)[sqrt(tanx)+sqrt(cotx)]dx=(pi)/(sqrtm), then the value of m is equal to

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int(sqrt(x-1))/(x sqrt(x+1))dx " is equal to "

int(cos sqrt(x))/( sqrt(x)) dx is equal to

inte^(sqrt(x))dx is equal to

int sqrt((x)/( 1-x))dx is equal to

Evaluate : int ( sqrt( tan x) - sqrt( cot x)) dx