Home
Class 12
MATHS
int(1)/(1+3 sin ^(2)x)dx is equal to...

`int(1)/(1+3 sin ^(2)x)dx` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{1}{1 + 3 \sin^2 x} \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{1}{1 + 3 \sin^2 x} \, dx \] ### Step 2: Divide by \(\cos^2 x\) Next, we divide both the numerator and the denominator by \(\cos^2 x\): \[ I = \int \frac{1/\cos^2 x}{\frac{1}{\cos^2 x} + 3 \frac{\sin^2 x}{\cos^2 x}} \, dx = \int \frac{\sec^2 x}{\sec^2 x + 3 \tan^2 x} \, dx \] ### Step 3: Substitute \( \tan x = t \) Let \( t = \tan x \). Then, the derivative \( dt = \sec^2 x \, dx \) implies \( dx = \frac{dt}{\sec^2 x} \). Substituting these into the integral gives: \[ I = \int \frac{dt}{1 + 3t^2} \] ### Step 4: Factor out the constant We can factor out the constant from the denominator: \[ I = \int \frac{dt}{1 + 3t^2} = \frac{1}{3} \int \frac{dt}{\frac{1}{3} + t^2} \] ### Step 5: Use the formula for integration The integral \(\int \frac{dt}{a^2 + t^2} = \frac{1}{a} \tan^{-1} \left(\frac{t}{a}\right) + C\) can be applied here. Here, \( a = \frac{1}{\sqrt{3}} \): \[ I = \frac{1}{3} \cdot \frac{1}{\frac{1}{\sqrt{3}}} \tan^{-1} \left(\frac{t}{\frac{1}{\sqrt{3}}}\right) + C = \frac{\sqrt{3}}{3} \tan^{-1} \left(\sqrt{3} t\right) + C \] ### Step 6: Substitute back \( t = \tan x \) Now, substituting back \( t = \tan x \): \[ I = \frac{\sqrt{3}}{3} \tan^{-1} \left(\sqrt{3} \tan x\right) + C \] ### Final Answer Thus, the final result of the integral is: \[ I = \frac{\sqrt{3}}{3} \tan^{-1} \left(\sqrt{3} \tan x\right) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

int(1)/(3-2sin^(2)x)dx

int(1)/(3-2sin^(2)x)dx

int 2 sin (x)dx is equal to :

int(1)/(cos x - sin x )dx is equal to

int (1)/(sin^(2)2x )dx

int(1)/(2+sin^(2) x)dx

int3sin(x)dx is equal to:

int2sin(x)dx is equal to:

int(1)/(3+4 sin x)dx

int(1)/(sin(x-a)cos(x-b))dx is equal to