Home
Class 12
MATHS
Evaluate : int sqrt((a+x)/(a-x)) dx...

Evaluate : `int sqrt((a+x)/(a-x)) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int \sqrt{\frac{a+x}{a-x}} \, dx \), we will follow a systematic approach. ### Step 1: Rationalize the Integrand We start by rationalizing the integrand: \[ I = \int \sqrt{\frac{a+x}{a-x}} \, dx = \int \frac{\sqrt{(a+x)(a+x)}}{\sqrt{(a-x)(a+x)}} \, dx = \int \frac{a+x}{\sqrt{a^2 - x^2}} \, dx \] ### Step 2: Split the Integral Now, we can split the integral into two parts: \[ I = \int \frac{a}{\sqrt{a^2 - x^2}} \, dx + \int \frac{x}{\sqrt{a^2 - x^2}} \, dx \] Let’s denote these two integrals as \( I_1 \) and \( I_2 \): \[ I_1 = \int \frac{a}{\sqrt{a^2 - x^2}} \, dx, \quad I_2 = \int \frac{x}{\sqrt{a^2 - x^2}} \, dx \] ### Step 3: Evaluate \( I_1 \) The integral \( I_1 \) can be evaluated using the standard integral formula: \[ I_1 = a \sin^{-1}\left(\frac{x}{a}\right) + C_1 \] ### Step 4: Evaluate \( I_2 \) For \( I_2 \), we use the substitution \( t = a^2 - x^2 \): \[ dt = -2x \, dx \quad \Rightarrow \quad dx = -\frac{dt}{2x} \] Thus, we have: \[ I_2 = \int \frac{x}{\sqrt{t}} \left(-\frac{dt}{2x}\right) = -\frac{1}{2} \int t^{-\frac{1}{2}} \, dt \] This evaluates to: \[ I_2 = -\frac{1}{2} \cdot 2\sqrt{t} + C_2 = -\sqrt{a^2 - x^2} + C_2 \] ### Step 5: Combine Results Now, we combine the results from \( I_1 \) and \( I_2 \): \[ I = I_1 + I_2 = a \sin^{-1}\left(\frac{x}{a}\right) - \sqrt{a^2 - x^2} + C \] ### Final Result Thus, the final result of the integral is: \[ I = a \sin^{-1}\left(\frac{x}{a}\right) - \sqrt{a^2 - x^2} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int\ sqrt((1+x)/(1-x))\ dx

Evaluate: int sqrt((1-x)/(1+x))dx

Evaluate: int1/(x\ sqrt(a x-x^2))\ dx

Evaluate: int(sqrt(x))/(x+1)\ dx

Evaluate: int(sqrt(x))/(x+1)\ dx

Evaluate: int(sqrt(1+x^2))/(1-x^2)dx

Evaluate: int(sqrt(1+x^2))/(1-x^2)dx

Evaluate : int_0^1sqrt(x(1-x))dx

Evaluate: int1/(sqrt((x-1)(x-2)))dx

Evaluate: int1/(sqrt((x-1)(x-2)))dx