Home
Class 12
MATHS
int tan^-1(sqrt((1-x)/(1+x)) dx...

`int tan^-1(sqrt((1-x)/(1+x)) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \tan^{-1} \left( \sqrt{\frac{1-x}{1+x}} \right) dx \), we will follow these steps: ### Step 1: Substitution Let \( x = \cos(\theta) \). Then, we have: \[ dx = -\sin(\theta) d\theta \] ### Step 2: Simplifying the Expression Substituting \( x = \cos(\theta) \) into the integral: \[ I = \int \tan^{-1} \left( \sqrt{\frac{1 - \cos(\theta)}{1 + \cos(\theta)}} \right)(- \sin(\theta) d\theta) \] Using the identity \( 1 - \cos(\theta) = 2\sin^2\left(\frac{\theta}{2}\right) \) and \( 1 + \cos(\theta) = 2\cos^2\left(\frac{\theta}{2}\right) \), we get: \[ \sqrt{\frac{1 - \cos(\theta)}{1 + \cos(\theta)}} = \sqrt{\frac{2\sin^2\left(\frac{\theta}{2}\right)}{2\cos^2\left(\frac{\theta}{2}\right)}} = \tan\left(\frac{\theta}{2}\right) \] Thus, the integral becomes: \[ I = -\int \tan^{-1}\left(\tan\left(\frac{\theta}{2}\right)\right) \sin(\theta) d\theta \] ### Step 3: Simplifying the Integral Since \( \tan^{-1}(\tan(x)) = x \) when \( x \) is in the principal range, we have: \[ I = -\int \frac{\theta}{2} \sin(\theta) d\theta \] ### Step 4: Integration by Parts Using integration by parts, let: - \( u = \frac{\theta}{2} \) then \( du = \frac{1}{2} d\theta \) - \( dv = \sin(\theta) d\theta \) then \( v = -\cos(\theta) \) Applying integration by parts: \[ I = -\left( -\frac{\theta}{2} \cos(\theta) + \int \cos(\theta) \cdot \frac{1}{2} d\theta \right) \] \[ = \frac{\theta}{2} \cos(\theta) - \frac{1}{2} \sin(\theta) \] ### Step 5: Back Substitution Now, we substitute back \( \theta = \cos^{-1}(x) \): \[ I = \frac{\cos^{-1}(x)}{2} \cdot \sqrt{1 - x^2} - \frac{1}{2} x + C \] ### Final Answer Thus, the integral evaluates to: \[ I = \frac{1}{2} \cos^{-1}(x) \sqrt{1 - x^2} - \frac{x}{2} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1) sin{2 tan^(-1)sqrt((1+x)/(1-x))}dx=

int_0^1 sqrt((1-x)/(1+x)) dx

Evaluate: int cos {2 tan^(-1) sqrt((1-x)/(1+x))}dx

Differentiate tan^(-1)x/(1+sqrt((1-x^2))) +{2tan^(-1)sqrt(((1-x)/(1+x)))}sinwdotrdottdotxdot

Evaluate: int tan ^(-1) sqrt x dx

Evaluate: int1/(sqrt(tan^(-1)x)(1+x^2))\ dx

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)x ,x!=0.

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)x ,x!=0.

int (x-1)sqrt(x+1)dx

Evaluate the following integral: int_0^1(sqrt(tan^(-1)x))/(1+x^2)dx

VMC MODULES ENGLISH-INTEGRAL CALCULUS-1-LEVEL 1
  1. int sec x ln(sec x+tan x)dx=

    Text Solution

    |

  2. Solve int cosx/cos(x-beta) dx

    Text Solution

    |

  3. int tan^-1(sqrt((1-x)/(1+x)) dx

    Text Solution

    |

  4. int(log(x+1)-logx)/(x(x+1))dx is equal to :

    Text Solution

    |

  5. If int ( dx )/(5 + 4 sin x) = A tan^(-1) ( B tan ((x)/(2)) + (4)/(3))...

    Text Solution

    |

  6. If int(xe^(x))/(sqrt(1+e^(x)))dx=f(x)sqrt(1+e^(x))-2logg(x)+C, then

    Text Solution

    |

  7. If int (dx)/(5+4 cos x) = k tan^(-1) (m tan ((x)/(2))) + C then :

    Text Solution

    |

  8. int (1)/((x+5)sqrt(x+4))dx is :

    Text Solution

    |

  9. Evaluate: inte^x\ [(secx+log(secx+tanx)]\ dx

    Text Solution

    |

  10. If int(2x^(2)+3)/((x^(2)-1)(x^(2)+4))dx=aln((x-1)/(x+1))+btan^(-1).(x)...

    Text Solution

    |

  11. int \ 1/x{loge^(e x)*loge^(e^2x) * loge^(e^3x)}dx

    Text Solution

    |

  12. Evaluate: inte^x\ (tanx-logcosx)\ dx

    Text Solution

    |

  13. If int(1)/((sinx+4)(sinx-1))dx =A(1)/("tan"(x)/(2)-1)+B"tan"^(-1){f(...

    Text Solution

    |

  14. The value of int [f(x)g''(x) - f''(x)g(x)] dx is equal to

    Text Solution

    |

  15. If int[sin^2x]/[1+sin^2x] dx =x-ktan^-1(M tanx) then: a. M=1/sqrt2 b....

    Text Solution

    |

  16. If f(x) = (1)/(cos^2xsqrt(1-tan x)) then its anti-derivative F(x) sati...

    Text Solution

    |

  17. If f(x) =(1)/(cos^(2)xsqrt(1+tanx)), then its anit-derivate F(x) s...

    Text Solution

    |

  18. Let f(x)=1/(4-3cos^2x+5sin^2x) and if its antiderivative F(x)=(1/3) ta...

    Text Solution

    |

  19. The value of int frac{dx}{x^2+5x+6} is:

    Text Solution

    |

  20. If polynomials P and Q satisfyint[(3x-1)cosx+(1-2x)sinx ]dx=P cosx+Qsi...

    Text Solution

    |