Home
Class 12
MATHS
If int ( dx )/(5 + 4 sin x) = A tan^(-1...

If `int ( dx )/(5 + 4 sin x) = A tan^(-1) ( B tan ((x)/(2)) + (4)/(3)) + C`, then :

A

`A = (2)/(3) , B = (5)/(3)`

B

`A = (1)/(3), B = (5)/(3)`

C

`A = (2)/(3), B = (2)/(3)`

D

`A = (1)/(3), B = (2)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{dx}{5 + 4 \sin x} \] we will follow these steps: ### Step 1: Rewrite the Integral We can use the identity for sine in terms of tangent: \[ \sin x = \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \] Substituting this into the integral gives: \[ I = \int \frac{dx}{5 + 4 \left(\frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\right)} \] ### Step 2: Simplify the Expression This can be rewritten as: \[ I = \int \frac{dx}{5 + \frac{8 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}} \] To combine the terms, we multiply the numerator and denominator by \(1 + \tan^2 \frac{x}{2}\): \[ I = \int \frac{(1 + \tan^2 \frac{x}{2}) \, dx}{5(1 + \tan^2 \frac{x}{2}) + 8 \tan \frac{x}{2}} \] ### Step 3: Change of Variables Let \(t = \tan \frac{x}{2}\). Then, we have: \[ dx = \frac{2}{1 + t^2} dt \] Substituting this in gives: \[ I = \int \frac{(1 + t^2) \cdot \frac{2}{1 + t^2} dt}{5(1 + t^2) + 8t} = \int \frac{2 \, dt}{5(1 + t^2) + 8t} \] ### Step 4: Factor the Denominator The denominator can be rearranged: \[ 5(1 + t^2) + 8t = 5t^2 + 8t + 5 \] ### Step 5: Complete the Square To integrate, we complete the square: \[ 5t^2 + 8t + 5 = 5\left(t^2 + \frac{8}{5}t + 1\right) = 5\left(\left(t + \frac{4}{5}\right)^2 + \frac{9}{25}\right) \] ### Step 6: Substitute Back into the Integral Now we have: \[ I = \frac{2}{5} \int \frac{dt}{\left(t + \frac{4}{5}\right)^2 + \left(\frac{3}{5}\right)^2} \] This integral is in the standard form: \[ \int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C \] ### Step 7: Solve the Integral Thus, we get: \[ I = \frac{2}{5} \cdot \frac{1}{\frac{3}{5}} \tan^{-1} \left(\frac{t + \frac{4}{5}}{\frac{3}{5}}\right) + C = \frac{2}{3} \tan^{-1} \left(\frac{5t + 4}{3}\right) + C \] ### Step 8: Substitute Back for \(t\) Substituting back \(t = \tan \frac{x}{2}\): \[ I = \frac{2}{3} \tan^{-1} \left(5 \tan \frac{x}{2} + \frac{4}{3}\right) + C \] ### Step 9: Compare with Given Form We compare this with the given form: \[ A \tan^{-1} \left(B \tan \frac{x}{2} + \frac{4}{3}\right) + C \] From this comparison, we find: \[ A = \frac{2}{3}, \quad B = 5 \] ### Final Result Thus, the values of \(A\) and \(B\) are: \[ A = \frac{2}{3}, \quad B = 5 \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

If int (dx)/(5+4 cos x) = k tan^(-1) (m tan ((x)/(2))) + C then :

(1) int(dx)/(5+4 sin x)

If int (dx)/(1- sin ^(4)x )= a tan x +b tan ^(-1) (c tan x )+ D, then:

int tan^(4)x dx = A tan^(3) x+ B tan x + f(x) , then

If int \ sqrt(cos^3x/sin^11x) \ dx = -2(A tan^(9//2)x + B tan^(5//2) x) + C, then find A and B.

If x=sin(2tan^(-1)3)and y=sin((1)/(2)tan^(-1)(4/3)) , then

int_(0)^(pi/2) sin 2x tan^(-1) (sin x) dx

The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan ^(-1) ((2 tan x+1)/(sqrtA))+C Then the value of A is:

If x=sin(2tan^(- 1)2), y=sin(1/2tan^(- 1)(4/3)) , then -

Find (dy)/(dx) if y=tan^(-1)((4x)/(1+5x^2))+tan^(-1)((2+3x)/(3-2x))

VMC MODULES ENGLISH-INTEGRAL CALCULUS-1-LEVEL 1
  1. int tan^-1(sqrt((1-x)/(1+x)) dx

    Text Solution

    |

  2. int(log(x+1)-logx)/(x(x+1))dx is equal to :

    Text Solution

    |

  3. If int ( dx )/(5 + 4 sin x) = A tan^(-1) ( B tan ((x)/(2)) + (4)/(3))...

    Text Solution

    |

  4. If int(xe^(x))/(sqrt(1+e^(x)))dx=f(x)sqrt(1+e^(x))-2logg(x)+C, then

    Text Solution

    |

  5. If int (dx)/(5+4 cos x) = k tan^(-1) (m tan ((x)/(2))) + C then :

    Text Solution

    |

  6. int (1)/((x+5)sqrt(x+4))dx is :

    Text Solution

    |

  7. Evaluate: inte^x\ [(secx+log(secx+tanx)]\ dx

    Text Solution

    |

  8. If int(2x^(2)+3)/((x^(2)-1)(x^(2)+4))dx=aln((x-1)/(x+1))+btan^(-1).(x)...

    Text Solution

    |

  9. int \ 1/x{loge^(e x)*loge^(e^2x) * loge^(e^3x)}dx

    Text Solution

    |

  10. Evaluate: inte^x\ (tanx-logcosx)\ dx

    Text Solution

    |

  11. If int(1)/((sinx+4)(sinx-1))dx =A(1)/("tan"(x)/(2)-1)+B"tan"^(-1){f(...

    Text Solution

    |

  12. The value of int [f(x)g''(x) - f''(x)g(x)] dx is equal to

    Text Solution

    |

  13. If int[sin^2x]/[1+sin^2x] dx =x-ktan^-1(M tanx) then: a. M=1/sqrt2 b....

    Text Solution

    |

  14. If f(x) = (1)/(cos^2xsqrt(1-tan x)) then its anti-derivative F(x) sati...

    Text Solution

    |

  15. If f(x) =(1)/(cos^(2)xsqrt(1+tanx)), then its anit-derivate F(x) s...

    Text Solution

    |

  16. Let f(x)=1/(4-3cos^2x+5sin^2x) and if its antiderivative F(x)=(1/3) ta...

    Text Solution

    |

  17. The value of int frac{dx}{x^2+5x+6} is:

    Text Solution

    |

  18. If polynomials P and Q satisfyint[(3x-1)cosx+(1-2x)sinx ]dx=P cosx+Qsi...

    Text Solution

    |

  19. Evaluate: int(sin^2x)/(cos^6x)\ dx

    Text Solution

    |

  20. If int frac{3cosx+2sinx}{4sinx+5cosx}dx=Ax+Blog|4sinx+5cosx|+C,then:

    Text Solution

    |