Home
Class 12
MATHS
If int (dx)/(5+4 cos x) = k tan^(-1) (m ...

If `int (dx)/(5+4 cos x) = k tan^(-1) (m tan ((x)/(2))) + C` then :

A

` k = (1)/(3), m = (1)/(3)`

B

`k = (1)/(3), m = (2)/(3)`

C

`k = (2)/(3), m = (2)/(3)`

D

`k = (2)/(3), = (2)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{dx}{5 + 4 \cos x} \] we will follow these steps: ### Step 1: Rewrite \(\cos x\) in terms of \(\tan\) We can use the half-angle identity for cosine: \[ \cos x = \frac{1 - \tan^2\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)} \] Let \( t = \tan\left(\frac{x}{2}\right) \). Then, we can rewrite the integral as: \[ I = \int \frac{dx}{5 + 4 \left(\frac{1 - t^2}{1 + t^2}\right)} \] ### Step 2: Substitute and simplify the integral Substituting \(\cos x\) into the integral gives: \[ I = \int \frac{dx}{5 + \frac{4(1 - t^2)}{1 + t^2}} = \int \frac{(1 + t^2) dx}{5(1 + t^2) + 4(1 - t^2)} \] Simplifying the denominator: \[ 5(1 + t^2) + 4(1 - t^2) = 5 + 5t^2 + 4 - 4t^2 = 9 + t^2 \] Thus, we have: \[ I = \int \frac{(1 + t^2) dx}{9 + t^2} \] ### Step 3: Change of variable Now, we need to express \(dx\) in terms of \(dt\). From the substitution \(t = \tan\left(\frac{x}{2}\right)\), we differentiate: \[ dx = \frac{2}{1 + t^2} dt \] Substituting this into the integral: \[ I = \int \frac{(1 + t^2) \cdot \frac{2}{1 + t^2} dt}{9 + t^2} = 2 \int \frac{dt}{9 + t^2} \] ### Step 4: Solve the integral The integral \(\int \frac{dt}{a^2 + t^2}\) is known to be: \[ \frac{1}{a} \tan^{-1}\left(\frac{t}{a}\right) + C \] In our case, \(a^2 = 9\) so \(a = 3\): \[ I = 2 \cdot \frac{1}{3} \tan^{-1}\left(\frac{t}{3}\right) + C = \frac{2}{3} \tan^{-1}\left(\frac{t}{3}\right) + C \] ### Step 5: Substitute back for \(t\) Recall that \(t = \tan\left(\frac{x}{2}\right)\): \[ I = \frac{2}{3} \tan^{-1}\left(\frac{\tan\left(\frac{x}{2}\right)}{3}\right) + C \] ### Step 6: Compare with the given form We need to compare this with the given form: \[ I = k \tan^{-1}(m \tan\left(\frac{x}{2}\right)) + C \] From our result, we see: \[ k = \frac{2}{3} \quad \text{and} \quad m = \frac{1}{3} \] ### Conclusion Thus, the values of \(k\) and \(m\) are: \[ k = \frac{2}{3}, \quad m = \frac{1}{3} \] ### Final Answer The correct option is **C: \(k = \frac{2}{3}\) and \(m = \frac{1}{3}\)**. ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

If int ( dx )/(5 + 4 sin x) = A tan^(-1) ( B tan ((x)/(2)) + (4)/(3)) + C , then :

If int (dx)/(1- sin ^(4)x )= a tan x +b tan ^(-1) (c tan x )+ D, then:

The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan ^(-1) ((2 tan x+1)/(sqrtA))+C Then the value of A is:

The value of int_(0) ^(2pi) cos ^(-1) ((1- tan ^(2) ""(x)/(2 ))/(1+ tan ^(2)""(x)/(2))) dx is:

int(tan x + cos x)^(2) dx

int tan^(4)x dx = A tan^(3) x+ B tan x + f(x) , then

If int ( 1+ cos 4x)/( cot x - tan x ) dx = k cos 4x + C , then the value of k is

int(dx)/(ax^(2)+bx+c)=k_(1)tan^(-1)(x+A)/(B)+C if

If int \ sqrt(cos^3x/sin^11x) \ dx = -2(A tan^(9//2)x + B tan^(5//2) x) + C, then find A and B.

int " x tan"^(-1) " x dx "

VMC MODULES ENGLISH-INTEGRAL CALCULUS-1-LEVEL 1
  1. If int ( dx )/(5 + 4 sin x) = A tan^(-1) ( B tan ((x)/(2)) + (4)/(3))...

    Text Solution

    |

  2. If int(xe^(x))/(sqrt(1+e^(x)))dx=f(x)sqrt(1+e^(x))-2logg(x)+C, then

    Text Solution

    |

  3. If int (dx)/(5+4 cos x) = k tan^(-1) (m tan ((x)/(2))) + C then :

    Text Solution

    |

  4. int (1)/((x+5)sqrt(x+4))dx is :

    Text Solution

    |

  5. Evaluate: inte^x\ [(secx+log(secx+tanx)]\ dx

    Text Solution

    |

  6. If int(2x^(2)+3)/((x^(2)-1)(x^(2)+4))dx=aln((x-1)/(x+1))+btan^(-1).(x)...

    Text Solution

    |

  7. int \ 1/x{loge^(e x)*loge^(e^2x) * loge^(e^3x)}dx

    Text Solution

    |

  8. Evaluate: inte^x\ (tanx-logcosx)\ dx

    Text Solution

    |

  9. If int(1)/((sinx+4)(sinx-1))dx =A(1)/("tan"(x)/(2)-1)+B"tan"^(-1){f(...

    Text Solution

    |

  10. The value of int [f(x)g''(x) - f''(x)g(x)] dx is equal to

    Text Solution

    |

  11. If int[sin^2x]/[1+sin^2x] dx =x-ktan^-1(M tanx) then: a. M=1/sqrt2 b....

    Text Solution

    |

  12. If f(x) = (1)/(cos^2xsqrt(1-tan x)) then its anti-derivative F(x) sati...

    Text Solution

    |

  13. If f(x) =(1)/(cos^(2)xsqrt(1+tanx)), then its anit-derivate F(x) s...

    Text Solution

    |

  14. Let f(x)=1/(4-3cos^2x+5sin^2x) and if its antiderivative F(x)=(1/3) ta...

    Text Solution

    |

  15. The value of int frac{dx}{x^2+5x+6} is:

    Text Solution

    |

  16. If polynomials P and Q satisfyint[(3x-1)cosx+(1-2x)sinx ]dx=P cosx+Qsi...

    Text Solution

    |

  17. Evaluate: int(sin^2x)/(cos^6x)\ dx

    Text Solution

    |

  18. If int frac{3cosx+2sinx}{4sinx+5cosx}dx=Ax+Blog|4sinx+5cosx|+C,then:

    Text Solution

    |

  19. If int frac{xdx}{x^2-4x+8}=K log (x^2-4x+8)+tan^(-1)(frac{x-2}{2})+C, ...

    Text Solution

    |

  20. int(e^(x))/(x+2)[1+(x+2)log(x+2)]dx=

    Text Solution

    |