Home
Class 12
MATHS
int \ 1/x{loge^(e x)*loge^(e^2x) * loge^...

`int \ 1/x{loge^(e x)*loge^(e^2x) * loge^(e^3x)}dx`

A

0

B

1

C

e

D

1/e

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{x} \log_e(e^x) \log_e(e^{2x}) \log_e(e^{3x}) \, dx \), we can follow these steps: ### Step 1: Simplify the logarithmic expressions Using the property of logarithms, \( \log_e(a^b) = b \log_e(a) \), we can simplify the logarithmic terms in the integral: \[ \log_e(e^x) = x, \quad \log_e(e^{2x}) = 2x, \quad \log_e(e^{3x}) = 3x \] Thus, the integral becomes: \[ \int \frac{1}{x} (x)(2x)(3x) \, dx \] ### Step 2: Combine the terms Now, we can combine the terms inside the integral: \[ \int \frac{1}{x} (6x^3) \, dx = \int 6x^2 \, dx \] ### Step 3: Integrate Now, we can integrate \( 6x^2 \): \[ \int 6x^2 \, dx = 6 \cdot \frac{x^3}{3} + C = 2x^3 + C \] ### Final Answer Thus, the final result of the integral is: \[ 2x^3 + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

int (1+log_e x)/x dx

inte^x/((1+e^x)(e+e^x))dx

int_(0)^(1)e^(2x)e^(e^(x) dx =)

I=int \ log_e (log_ex)/(x(log_e x))dx

int(e^x)/((1+e^x)(2+e^x))dx

Find the area bounded by y=log_e x , y=-log_e x ,y=log_e(-x),a n dy=-log_e(-x)dot

int (e^x +2x)/(e^x+x^2) dx

The integral inte^x(f(x)+f\'(x))dx can be solved by using integration by parts such that: I=inte^xf(x)dx+inte^xf\'(x)dx=e^xf(x)-inte^xf\'(x)dx+inte^xf\'(x)dx=e^xf(x)+C , and inte^(ax)(f(x)+(f\'(x))/a)dx=e^(ax)f(x)/a+C ,Now answer the question: int{log_e(log_ex)+1/(log_ex)^2}dx is equal to (A) log_e(log_ex)+C (B) xlog_e(log_ex)-x/log_ex+C (C) x/log_ex-log_ex+C (D) log_e(log_ex)-x/log_ex+C

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

int_(1//e)^(e) (dx)/(x(log x)^(1//3))