Home
Class 12
MATHS
If int(1)/((sinx+4)(sinx-1))dx =A(1)/(...

If `int(1)/((sinx+4)(sinx-1))dx`
`=A(1)/("tan"(x)/(2)-1)+B"tan"^(-1){f(x)}+C`. Then,

A

`A = (1)/(5), B = (-2)/(5sqrt(15)), f(x) = (4 tan x + 3)/(sqrt(15))`

B

`A = - (1)/(5), B tan^(-1), B = (1)/(sqrt(15)), f(x) = ( 4 tan ((x)/(2)) + 1)/(sqrt(15))`

C

`A = (2)/(5), B = (-2)/(5),f(x) = (4 tan x + 1)/(5)`

D

`A = (2)/(5),B = (-2)/(5sqrt(15)), f(x) = (4 tan (x)/(2) + 1)/(sqrt(15))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{(\sin x + 4)(\sin x - 1)} \, dx \), we will use the method of partial fractions. ### Step 1: Set up the partial fractions We can express the integrand as: \[ \frac{1}{(\sin x + 4)(\sin x - 1)} = \frac{A}{\sin x + 4} + \frac{B}{\sin x - 1} \] where \( A \) and \( B \) are constants to be determined. ### Step 2: Multiply through by the denominator Multiplying both sides by \( (\sin x + 4)(\sin x - 1) \) gives: \[ 1 = A(\sin x - 1) + B(\sin x + 4) \] ### Step 3: Expand and collect terms Expanding the right-hand side: \[ 1 = A \sin x - A + B \sin x + 4B \] Combining like terms: \[ 1 = (A + B) \sin x + (4B - A) \] ### Step 4: Set up the system of equations For the equation to hold for all \( x \), the coefficients of \( \sin x \) must match and the constant terms must match: 1. \( A + B = 0 \) 2. \( 4B - A = 1 \) ### Step 5: Solve the system of equations From the first equation, we can express \( A \) in terms of \( B \): \[ A = -B \] Substituting into the second equation: \[ 4B - (-B) = 1 \implies 4B + B = 1 \implies 5B = 1 \implies B = \frac{1}{5} \] Now substituting back to find \( A \): \[ A = -B = -\frac{1}{5} \] ### Step 6: Rewrite the integral Now we can rewrite the integral: \[ \int \frac{1}{(\sin x + 4)(\sin x - 1)} \, dx = \int \left( \frac{-\frac{1}{5}}{\sin x + 4} + \frac{\frac{1}{5}}{\sin x - 1} \right) \, dx \] This simplifies to: \[ -\frac{1}{5} \int \frac{1}{\sin x + 4} \, dx + \frac{1}{5} \int \frac{1}{\sin x - 1} \, dx \] ### Step 7: Integrate each term The integrals can be solved using standard techniques. We will denote: \[ I_1 = \int \frac{1}{\sin x + 4} \, dx \quad \text{and} \quad I_2 = \int \frac{1}{\sin x - 1} \, dx \] Thus, we have: \[ \int \frac{1}{(\sin x + 4)(\sin x - 1)} \, dx = -\frac{1}{5} I_1 + \frac{1}{5} I_2 + C \] ### Step 8: Identify constants A, B, and f(x) From the expression, we can identify: - \( A = -\frac{1}{5} \) - \( B = \frac{1}{5} \) - \( f(x) = \sin x \) (as we are integrating with respect to \( \sin x \)) ### Final Answer Thus, the values are: - \( A = -\frac{1}{5} \) - \( B = \frac{1}{5} \) - \( f(x) = \sin x \)
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

int(1+sinx)/(sinx(1+cosx))dx

int(1+sinx)/(sinx(1+cosx))dx

tan^-1((1+cosx)/(sinx))

int (1-sinx )/ (1-cos x) dx=?

Evaluate: int1/(sinx(2cos^2x-1)dx

int 1/((1+x^2)tan^(-1)x)dx

If int(1)/((x^(2)+1)(x^(2)+4))dx=Atan^(-1)x+B" tan"^(-1)(x)/(2)+C , then

Evaluate: int(sin2x)/((1+sinx)(2+sinx))dx

Evaluate: int1/(sinx(2cos^2x-1))\ dx

int(5cosx-4sinx+1/cos^2x)dx