Home
Class 12
MATHS
The value of int [f(x)g''(x) - f''(x)g(...

The value of `int [f(x)g''(x) - f''(x)g(x)] dx` is equal to

A

`(fx)/(g'(x))`

B

`f'(x) g(x) - f(x) g(x)`

C

`f(x) g'(x) - f'(x) g(x)`

D

`f(x) g(x) - f(x) g(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int [f(x) g''(x) - f''(x) g(x)] \, dx \), we can use integration by parts. Here’s a step-by-step solution: ### Step 1: Identify the Functions We rewrite the integral: \[ I = \int [f(x) g''(x) - f''(x) g(x)] \, dx \] We can split this into two separate integrals: \[ I = \int f(x) g''(x) \, dx - \int f''(x) g(x) \, dx \] ### Step 2: Apply Integration by Parts For the first integral \( \int f(x) g''(x) \, dx \), we can use integration by parts. Let: - \( u = f(x) \) → \( du = f'(x) \, dx \) - \( dv = g''(x) \, dx \) → \( v = g'(x) \) Using the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] we have: \[ \int f(x) g''(x) \, dx = f(x) g'(x) - \int g'(x) f'(x) \, dx \] ### Step 3: Substitute Back Now substituting this back into our expression for \( I \): \[ I = \left[ f(x) g'(x) - \int g'(x) f'(x) \, dx \right] - \int f''(x) g(x) \, dx \] ### Step 4: Combine the Integrals Now we need to handle the second integral \( -\int f''(x) g(x) \, dx \). We can again apply integration by parts: Let: - \( u = g(x) \) → \( du = g'(x) \, dx \) - \( dv = f''(x) \, dx \) → \( v = f'(x) \) Thus: \[ -\int f''(x) g(x) \, dx = -\left[ g(x) f'(x) - \int f'(x) g'(x) \, dx \right] \] ### Step 5: Combine Everything Now, substituting this back into our expression for \( I \): \[ I = f(x) g'(x) - \int g'(x) f'(x) \, dx - g(x) f'(x) + \int f'(x) g'(x) \, dx \] Notice that the terms \( -\int g'(x) f'(x) \, dx \) and \( \int f'(x) g'(x) \, dx \) cancel each other out: \[ I = f(x) g'(x) - g(x) f'(x) \] ### Final Result Thus, the value of the integral is: \[ \int [f(x) g''(x) - f''(x) g(x)] \, dx = f(x) g'(x) - g(x) f'(x) \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int[f(x)g''(x)-f''(x)g(x)]dx

int (f'(x))/( f(x) log(f(x)))dx is equal to

The value of int_1^2 {f(g(x))}^(-1)f'(g(x))g'(x) dx , where g(1)=g(2), is equal to

If intg(x)dx=g(x) , then the value of the integral intf(x)g(x){f(x)+2f'(x)}dx is

If f(x) and g(x) are two continuous functions defined on [-a,a] then the the value of int_(-a)^(a) {f(x)f+(-x) } {g(x)-g(-x)}dx is,

Suppose that the function f(x) and g(x) satisfy the system of equations f(x)+3g(x)=x^(2)+x+6 and 2f(x)+4g(x)=2x^(2)+4 for every x. The value of x for which f(x)=g(x) can be equal to

Let f be a differentiable function satisfying f(xy)=f(x).f(y).AA x gt 0, y gt 0 and f(1+x)=1+x{1+g(x)} , where lim_(x to 0)g(x)=0 then int (f(x))/(f'(x))dx is equal to

Consider two differentiable functions f(x),g(x) satisfying 6intf(x)g(x)dx=x^(6)+3x^(4)+3x^(2)+c and 2 int(g(x)dx)/(f(x))=x^(2)+c, " where " f(x) gt 0 AA x in R. int (g(x)-f(x))dx is equal to

If f(x)=min{|x-1|,|x|,|x+1|, then the value of int_-1^1 f(x)dx is equal to

The value of the integral int_(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal to