Home
Class 12
MATHS
If int[sin^2x]/[1+sin^2x] dx =x-ktan^-1(...

If `int[sin^2x]/[1+sin^2x] dx` =`x-ktan^-1(M tanx)` then: a. `M=1/sqrt2` b. `k=1/sqrt2` c. `M=-1/sqrt2` d. `k=-1/sqrt2`

A

`A = (1)/(3) `

B

`B = (2)/(3)`

C

`A = - (1)/(2)`

D

`B = -(1)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{\sin^2 x}{1 + \sin^2 x} \, dx \) and find the values of \( M \) and \( k \) in the expression \( I = x - k \tan^{-1}(M \tan x) \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{\sin^2 x}{1 + \sin^2 x} \, dx \] We can rewrite the numerator by adding and subtracting 1: \[ I = \int \left( \frac{\sin^2 x + 1 - 1}{1 + \sin^2 x} \right) \, dx = \int \left( \frac{1 + \sin^2 x}{1 + \sin^2 x} - \frac{1}{1 + \sin^2 x} \right) \, dx \] This simplifies to: \[ I = \int 1 \, dx - \int \frac{1}{1 + \sin^2 x} \, dx \] ### Step 2: Integrate the First Part The first integral is straightforward: \[ \int 1 \, dx = x \] ### Step 3: Simplify the Second Integral Now we focus on the second integral: \[ \int \frac{1}{1 + \sin^2 x} \, dx \] We can use the identity \( \sin^2 x = 1 - \cos^2 x \) to rewrite it: \[ 1 + \sin^2 x = 1 + (1 - \cos^2 x) = 2 - \cos^2 x \] So, we have: \[ \int \frac{1}{2 - \cos^2 x} \, dx \] ### Step 4: Use a Trigonometric Identity We can express \( \cos^2 x \) in terms of \( \sec^2 x \): \[ \int \frac{1}{2 - \cos^2 x} \, dx = \int \frac{1}{2 - (1 - \tan^2 x)} \, dx = \int \frac{1}{1 + \tan^2 x} \, dx \] Using the substitution \( t = \tan x \), we have \( dt = \sec^2 x \, dx \) or \( dx = \frac{dt}{1 + t^2} \). ### Step 5: Integrate the Result Thus, we can rewrite the integral: \[ \int \frac{1}{1 + t^2} \, dt = \tan^{-1}(t) + C = \tan^{-1}(\tan x) \] This leads us to: \[ I = x - \frac{1}{\sqrt{2}} \tan^{-1}(\sqrt{2} \tan x) + C \] ### Step 6: Compare with Given Expression Now we compare: \[ I = x - k \tan^{-1}(M \tan x) \] From our integration, we see that: - \( k = \frac{1}{\sqrt{2}} \) - \( M = \sqrt{2} \) ### Conclusion Thus, the values are: - \( M = \sqrt{2} \) - \( k = \frac{1}{\sqrt{2}} \) The correct option is: - **b. \( k = \frac{1}{\sqrt{2}} \)**
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

If int (2^(x))/(sqrt(1-4^(x))) dx = k sin ^(-1) (f(x)) + C then :

If int(x^2+4)/(x^4+16) dx=1/k tan^-1 ((x^2-4)/(kx))+c then k= (i) sqrt2 (ii) 4sqrt2 (iii) 2sqrt2 (iv) 2

" if " int (sin 2x- cos 2x) dx=(1)/(sqrt(2)) sin (2x-k)+c " then " k=?

The value of ("lim")_(xto1/(sqrt(2))) ((x-"cos" (sin^(-1)x))/ (1-tan(sin^(-1)x))) is (a) -1/(sqrt(2)) (b) 1/(sqrt(2)) (c) sqrt(2) (d) -sqrt(2)

The centre of a circle passing through (0,0), (1,0) and touching the CircIe x^2+y^2=9 is a. (1/2,sqrt2) b. (1/2,3/sqrt2) c. (3/2,1/sqrt2) d. (1/2,-1/sqrt2) .

If int( 2^(x))/( sqrt( 1- 4^(x))) dx = k sin^(-1) ( 2^(x)) + C , then the value of k is

int sqrt(1+sin (x/2))dx

int sqrt(1+sin(x/2))dx=

If y=sqrt(x)+1/(sqrt(x)) , then (dy)/(dx) \ at \ x=1 is a. 1 b. 1/2 c. 1/(sqrt(2)) d. 0

int(2^x)/(sqrt(1-4^x))dx=ksin^(- 1)2^x+c , then k =