Home
Class 12
MATHS
If f(x) = (1)/(cos^2xsqrt(1-tan x)) then...

If `f(x) = (1)/(cos^2xsqrt(1-tan x))` then its anti-derivative F(x) satisfying F(0) = 4 is:

A

`sqrt(1+tan x)+ 4`

B

`(2)/(3)(1+ tan x)^(3//2)`

C

`2(sqrt(1+tanx)+ 1)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the anti-derivative \( F(x) \) of the function \( f(x) = \frac{1}{\cos^2 x \sqrt{1 - \tan x}} \) that satisfies \( F(0) = 4 \), we will follow these steps: ### Step 1: Set up the integral We start with the function: \[ F(x) = \int f(x) \, dx = \int \frac{1}{\cos^2 x \sqrt{1 - \tan x}} \, dx \] **Hint:** Remember that \( \tan x = \frac{\sin x}{\cos x} \) and \( \cos^2 x = \frac{1}{\sec^2 x} \). ### Step 2: Substitute for \( \sqrt{1 - \tan x} \) Let: \[ t = \sqrt{1 - \tan x} \] Then, differentiate both sides: \[ \frac{dt}{dx} = \frac{1}{2\sqrt{1 - \tan x}} \cdot (-\sec^2 x) = -\frac{\sec^2 x}{2\sqrt{1 - \tan x}} \] Thus, we can express \( dx \) in terms of \( dt \): \[ dx = -2 \frac{\sqrt{1 - \tan x}}{\sec^2 x} dt \] **Hint:** Use the relationship between \( \tan x \) and \( \sec^2 x \) to simplify further. ### Step 3: Substitute into the integral Now substitute \( dx \) into the integral: \[ F(x) = \int \frac{1}{\cos^2 x \sqrt{1 - \tan x}} \left(-2 \frac{\sqrt{1 - \tan x}}{\sec^2 x}\right) dt \] This simplifies to: \[ F(x) = -2 \int dt \] **Hint:** Remember that \( \sec^2 x = \frac{1}{\cos^2 x} \). ### Step 4: Integrate The integral of \( dt \) is: \[ F(x) = -2t + C \] **Hint:** Don't forget to substitute back for \( t \). ### Step 5: Substitute back for \( t \) Substituting back \( t = \sqrt{1 - \tan x} \): \[ F(x) = -2\sqrt{1 - \tan x} + C \] ### Step 6: Use the initial condition We have the condition \( F(0) = 4 \). First, calculate \( F(0) \): \[ F(0) = -2\sqrt{1 - \tan(0)} + C = -2\sqrt{1 - 0} + C = -2 + C \] Setting this equal to 4 gives: \[ -2 + C = 4 \implies C = 6 \] **Hint:** Always check your calculations when substituting values. ### Step 7: Write the final answer Thus, the anti-derivative is: \[ F(x) = -2\sqrt{1 - \tan x} + 6 \] ### Final Answer: \[ F(x) = -2\sqrt{1 - \tan x} + 6 \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

If f(x) =(1)/(cos^(2)xsqrt(1+tanx)) , then its anit-derivate F(x) satisfying F(0) = 4 is :

Let f(x)=1/(4-3cos^2x+5sin^2x) and if its antiderivative F(x)=(1/3) tan^-1(g(x))+C then g(x) is equal to

Find an anti-derivative of the function f(x)=1/x

The derivative of f(x) = x^(2) at x = 1 is

If f(x) = x^2 - 3x + 4 , then find the values of x satisfying the equation f(x) = f(2x + 1) .

If it is know that at the point x = 1 two anti- derivatives of f(x) = e^(x) differ by 2, the difference of the anti - derivatives at x = 100 is :

If f(x)=2xsqrt(1-x^(2)) , then show that f(sin""(x)/(2))=sinx .

If f(1) = 1, f'(1) = 3, then the derivative of f(f(x))) + (f(x))^(2) at x = 1 is

If f(1) = 3, f' (1) = -1/3 , then the derivative of {x^11 + f (x)}^-2 at x = 1, is

If f(x) = sqrt((1)/(tan^(-1)(x^(2)-4x + 3))) , then f(x) is continuous for