Home
Class 12
MATHS
Let f(x)=1/(4-3cos^2x+5sin^2x) and if it...

Let `f(x)=1/(4-3cos^2x+5sin^2x)` and if its antiderivative `F(x)=(1/3) tan^-1(g(x))+C` then `g(x)` is equal to

A

`3 tan x`

B

`sqrt2 tan x`

C

`2 tan x`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the function \( g(x) \) such that the antiderivative \( F(x) \) of the function \( f(x) = \frac{1}{4 - 3\cos^2 x + 5\sin^2 x} \) can be expressed as \( F(x) = \frac{1}{3} \tan^{-1}(g(x)) + C \). ### Step-by-Step Solution: 1. **Rewrite the Function \( f(x) \)**: \[ f(x) = \frac{1}{4 - 3\cos^2 x + 5\sin^2 x} \] We can use the identity \( \sin^2 x + \cos^2 x = 1 \) to rewrite \( f(x) \): \[ f(x) = \frac{1}{4 - 3\cos^2 x + 5(1 - \cos^2 x)} = \frac{1}{4 - 3\cos^2 x + 5 - 5\cos^2 x} = \frac{1}{9 - 8\cos^2 x} \] 2. **Express in Terms of \( \tan x \)**: We can express \( \cos^2 x \) in terms of \( \tan x \): \[ \cos^2 x = \frac{1}{1 + \tan^2 x} \] Thus, \[ f(x) = \frac{1}{9 - 8\left(\frac{1}{1 + \tan^2 x}\right)} = \frac{1 + \tan^2 x}{9(1 + \tan^2 x) - 8} \] Simplifying gives: \[ f(x) = \frac{1 + \tan^2 x}{9 + 9\tan^2 x - 8} = \frac{1 + \tan^2 x}{1 + 9\tan^2 x} \] 3. **Integrate \( f(x) \)**: Now, we need to find the integral: \[ F(x) = \int f(x) \, dx = \int \frac{1 + \tan^2 x}{1 + 9\tan^2 x} \, dx \] We can split the integral: \[ F(x) = \int \frac{1}{1 + 9\tan^2 x} \, dx + \int \frac{\tan^2 x}{1 + 9\tan^2 x} \, dx \] 4. **Use Substitution for the First Integral**: For the first integral, we can use the formula: \[ \int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right) + C \] Here, \( a^2 = \frac{1}{9} \) so \( a = \frac{1}{3} \): \[ \int \frac{dx}{1 + 9\tan^2 x} = \frac{1}{3} \tan^{-1}(3\tan x) + C \] 5. **Combine Results**: Thus, we have: \[ F(x) = \frac{1}{3} \tan^{-1}(3\tan x) + C \] 6. **Identify \( g(x) \)**: From the expression \( F(x) = \frac{1}{3} \tan^{-1}(g(x)) + C \), we can see that: \[ g(x) = 3\tan x \] ### Final Answer: \[ g(x) = 3\tan x \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

If g(x)=1+sqrtx and f(g(x))=3+2sqrtx+x then f(x) is equal to

If f(x)=|x-1|" and "g(x)=f(f(f(x))) , then for xgt2,g'(x) is equal to

If f(x) = 3x + 1 and g(x) = x^(2) - 1 , then (f + g) (x) is equal to

Let f(x)={(1-sin^3x)/(3cos^2x) if x pi/2 find a and b. .

If g(x)=x^3+x-2 and g(f(x))=x^3+3x^2+4x then f(1)+f(2) is equal to ________

Let g (x) be then inverse of f (x) such that f '(x) =(1)/(1+ x ^(5)), then (d^(2) (g (x)))/(dx ^(2)) is equal to:

Let g (x) be then inverse of f (x) such that f '(x) =(1)/(1+ x ^(5)), then (d^(2) (g (x)))/(dx ^(2)) is equal to:

If f(x)=sin^2x and the composite function g(f(x))=|sinx| , then g(x) is equal to (a) sqrt(x-1) (b) sqrt(x) (c) sqrt(x+1) (d) -sqrt(x)

Suppose f, g, and h be three real valued function defined on R. Let f(x) = 2x + |x|, g(x) = (1)/(3)(2x-|x|) and h(x) = f(g(x)) The domain of definition of the function l (x) = sin^(-1) ( f(x) - g (x) ) is equal to

If f(x)=x^3+2x^2+3x+4 and g(x) is the inverse of f(x) then g^(prime)(4) is equal to- 1/4 (b) 0 (c) 1/3 (d) 4