Home
Class 12
MATHS
If int frac{3cosx+2sinx}{4sinx+5cosx}dx=...

If `int frac{3cosx+2sinx}{4sinx+5cosx}dx=Ax+Blog|4sinx+5cosx|+C`,then:

A

`A=frac{23}{41},B=frac{1}{41}`

B

`A=frac{23}{41},B=frac{2}{41}`

C

`A=frac{11}{23},B=frac{2}{23}`

D

`A=frac{12}{23},B=frac{2}{23}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{3 \cos x + 2 \sin x}{4 \sin x + 5 \cos x} \, dx\) and express it in the form \(Ax + B \log |4 \sin x + 5 \cos x| + C\), we will follow these steps: ### Step 1: Identify coefficients We compare the integral with the standard form: \[ \int \frac{a \cos x + b \sin x}{c \cos x + d \sin x} \, dx = Ax + B \log |c \cos x + d \sin x| + C \] From our integral, we identify: - \(a = 3\) - \(b = 2\) - \(c = 5\) - \(d = 4\) ### Step 2: Calculate \(A\) Using the formula for \(A\): \[ A = \frac{ad + bc}{c^2 + d^2} \] Substituting the values: \[ A = \frac{(3)(4) + (2)(5)}{5^2 + 4^2} = \frac{12 + 10}{25 + 16} = \frac{22}{41} \] ### Step 3: Calculate \(B\) Using the formula for \(B\): \[ B = \frac{ab - cd}{c^2 + d^2} \] Substituting the values: \[ B = \frac{(3)(2) - (5)(4)}{5^2 + 4^2} = \frac{6 - 20}{25 + 16} = \frac{-14}{41} \] ### Step 4: Conclusion Thus, we have: - \(A = \frac{22}{41}\) - \(B = \frac{-14}{41}\) The integral can be expressed as: \[ \int \frac{3 \cos x + 2 \sin x}{4 \sin x + 5 \cos x} \, dx = \frac{22}{41}x - \frac{14}{41} \log |4 \sin x + 5 \cos x| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

intsinx/(3sinx+5cosx)dx

int frac{sinx}{1+cosx} dx

int cosx . sinx dx

inte^(x)(sinx+cosx)dx=?

The value of int frac{sinx}{2cosx+3}dx is:

If int (3sin x+2 cosx)/(3cosx+2sinx)dx=ax+blog_(e)|2 sinx+3 cosx|+c then a. a= -(12)/(13) b. b=(6)/(13) c. a=(12)/(13) d. b= -(15)/(39)

If int(sinx+3cosx)/(sinx+cosx)dx=(kx)/(2)+ln(sinx+cosx) , then k is_________.

Expand | (cosx, -sinx),(sinx , cosx)|

int(5cosx-4sinx+1/cos^2x)dx

intdx/(3sinx-4cosx+5)