Home
Class 12
MATHS
int sqrt(1+secx) dx is equal to:...

`int sqrt(1+secx) dx` is equal to:

A

`2 tan ^(-1) sqrt(frac{1-cosx}{cosx)}+C`

B

`tan ^(-1) sqrt(frac{1-cosx}{cosx)}+C`

C

`3tan ^(-1) sqrt(frac{1+cosx}{cosx)}+C`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \sqrt{1 + \sec x} \, dx \), we will follow these steps: ### Step 1: Substitute \( 1 + \sec x \) Let \( 1 + \sec x = t^2 \). Then, we differentiate both sides: \[ \frac{d}{dx}(1 + \sec x) = \sec x \tan x \, dx = 2t \, dt \] This gives us: \[ \sec x \tan x \, dx = 2t \, dt \quad \Rightarrow \quad dx = \frac{2t \, dt}{\sec x \tan x} \] ### Step 2: Express \( \sec x \) and \( \tan x \) in terms of \( t \) From our substitution, we have: \[ \sec x = t^2 - 1 \] Using the identity \( \sec^2 x = 1 + \tan^2 x \), we can express \( \tan x \) as: \[ \tan^2 x = \sec^2 x - 1 = (t^2 - 1)^2 - 1 = t^4 - 2t^2 \] Thus, \[ \tan x = \sqrt{t^4 - 2t^2} \] ### Step 3: Substitute into the integral Now substituting \( \sec x \) and \( \tan x \) into the integral: \[ I = \int \sqrt{t^2} \cdot \frac{2t \, dt}{(t^2 - 1) \cdot \sqrt{t^4 - 2t^2}} \] This simplifies to: \[ I = \int \frac{2t^2 \, dt}{(t^2 - 1) \cdot \sqrt{t^4 - 2t^2}} \] ### Step 4: Simplify the integral We can simplify the expression further. Notice that: \[ \sqrt{t^4 - 2t^2} = \sqrt{t^2(t^2 - 2)} = t \sqrt{t^2 - 2} \] Thus, the integral becomes: \[ I = \int \frac{2t \, dt}{t^2 - 1} \cdot \frac{1}{\sqrt{t^2 - 2}} \] ### Step 5: Make another substitution Let \( t^2 - 2 = z^2 \), then \( t^2 = z^2 + 2 \) and differentiate: \[ 2t \, dt = 2z \, dz \quad \Rightarrow \quad t \, dt = z \, dz \] Now substituting this into the integral: \[ I = \int \frac{2z \, dz}{(z^2 + 2 - 1) \cdot z} = \int \frac{2 \, dz}{z^2 + 1} \] ### Step 6: Integrate The integral \( \int \frac{2 \, dz}{z^2 + 1} \) is a standard integral: \[ I = 2 \tan^{-1}(z) + C \] ### Step 7: Back substitute Recall that \( z = \sqrt{t^2 - 2} \) and \( t^2 = 1 + \sec x \): \[ z = \sqrt{(1 + \sec x) - 2} = \sqrt{\sec x - 1} \] Thus, we have: \[ I = 2 \tan^{-1}(\sqrt{\sec x - 1}) + C \] ### Final Answer The integral \( \int \sqrt{1 + \sec x} \, dx \) is equal to: \[ I = 2 \tan^{-1}(\sqrt{\sec x - 1}) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

int sqrt(1+cosecx) dx equals

int sqrt(e^(x)-1)dx is equal to

int sqrt(1+sinx)dx " is equal to "

int sqrt((x)/( 1-x))dx is equal to

intsqrt(secx+1)dx

inte^(sqrt(x))dx is equal to

int(cos sqrt(x))/( sqrt(x)) dx is equal to

int(x+sqrt(x+1))/(x+2) dx is equal to:

int ( 1+ x + sqrt( x+ x^(2)))/(( sqrt(x) + sqrt( 1+x))dx is equal to

int(secx)/(sqrt(cos2x)) dx is equal to