Home
Class 12
MATHS
int x(ln(x+sqrt(1+x^2))/sqrt(1+x^2)dx...

`int x(ln(x+sqrt(1+x^2))/sqrt(1+x^2)dx`

A

`[log (x+sqrt(1+x^2))]^2`

B

`frac {1}{4}[log (x+sqrt(1+x^2))]`

C

`log (x+sqrt(1+x^2))sqrt(1+x^2)-x+c`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int x \frac{\ln(x + \sqrt{1+x^2})}{\sqrt{1+x^2}} \, dx \), we will use the substitution method and integration by parts. Here’s the step-by-step solution: ### Step 1: Substitution Let \( x = \tan \theta \). Then, we have: \[ dx = \sec^2 \theta \, d\theta \] Also, we know: \[ \sqrt{1+x^2} = \sqrt{1+\tan^2 \theta} = \sec \theta \] Substituting these into the integral gives: \[ I = \int \tan \theta \frac{\ln(\tan \theta + \sec \theta)}{\sec \theta} \sec^2 \theta \, d\theta \] This simplifies to: \[ I = \int \tan \theta \ln(\tan \theta + \sec \theta) \sec \theta \, d\theta \] ### Step 2: Integration by Parts Let: - \( u = \ln(\tan \theta + \sec \theta) \) - \( dv = \tan \theta \sec \theta \, d\theta \) Now, we need to find \( du \) and \( v \): - Differentiate \( u \): \[ du = \frac{1}{\tan \theta + \sec \theta} (\sec^2 \theta + \tan \theta \sec \theta) \, d\theta \] - Integrate \( dv \): \[ v = \sec \theta \] Now applying integration by parts: \[ I = u v - \int v \, du \] This gives: \[ I = \ln(\tan \theta + \sec \theta) \sec \theta - \int \sec \theta \cdot \frac{1}{\tan \theta + \sec \theta} (\sec^2 \theta + \tan \theta \sec \theta) \, d\theta \] ### Step 3: Simplifying the Integral The integral can be simplified further, but for brevity, we will focus on the main result. The integration of \( \sec^2 \theta \) is straightforward: \[ \int \sec^2 \theta \, d\theta = \tan \theta \] ### Step 4: Back Substitution Now, we substitute back \( \theta \) in terms of \( x \): \[ \sec \theta = \sqrt{1+x^2}, \quad \tan \theta = x \] Thus, we have: \[ I = \ln(x + \sqrt{1+x^2}) \sqrt{1+x^2} - \tan \theta + C \] Substituting back gives: \[ I = \ln(x + \sqrt{1+x^2}) \sqrt{1+x^2} - x + C \] ### Final Answer The final expression for the integral is: \[ I = \ln(x + \sqrt{1+x^2}) \sqrt{1+x^2} - x + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

If int(xln(x+sqrt(1+x^2)))/(sqrt(1+x^2))dx =asqrt(1+x^2)ln(x+sqrt(1+x^2))+b x+c , then (A) a=1,b =-1 (B) a=1,b=1 (C) a=-1, b=1 (D) a=-1, b=-1

The function f (x) =1+ x ln (x+ sqrt(1+ x ^(2)))-sqrt(1- x^(2)) is:

int(x)/(sqrt(1+x^(2)))dx

int(x)/(sqrt(1+x^(2)))dx

int(1-x^(2))sqrt(x)dx

int(2x+3)/sqrt(1+x+x^2)dx

int(sqrt(1-x^(2))-x)/(sqrt(1-x^(2))(1+xsqrt(1-x^(2))))dx is

int 1/((1-x^2)sqrt(1+x^2))dx

int_((x sin^(-1)x)/(sqrt(1-x)^(2)))dx

Evaluate : int (dx)/( (1 - x^(2)) sqrt( 1 + x^(2)))