Home
Class 12
MATHS
Evaluate: intf(x)/(x^3-1)dx, where f(x) ...

Evaluate: `intf(x)/(x^3-1)dx`, where `f(x)` is a polynomial of degree 2 in x such that `f(0)=f(1)=3f(2)=-3`

A

`log (x-1)+ log (x^(2) + x+ 1) + (2)/(sqrt(3)) tan^(-1) (2x + 1)/(sqrt(3)) + k`

B

`log(x-1) + log (x^(2) + x+ 1)+ (2)/(sqrt(3)) tan^(-1) 2x + k`

C

`log (x+1)+ log (x^(2) + x + 1) + k`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \(\int \frac{f(x)}{x^3 - 1} \, dx\), where \(f(x)\) is a polynomial of degree 2 such that \(f(0) = f(1) = 3f(2) = -3\), we will follow these steps: ### Step 1: Define the polynomial \(f(x)\) Since \(f(x)\) is a polynomial of degree 2, we can express it as: \[ f(x) = ax^2 + bx + c \] ### Step 2: Use the given conditions to find coefficients We have the conditions: 1. \(f(0) = c = -3\) 2. \(f(1) = a + b + c = -3\) 3. \(f(2) = 4a + 2b + c = -1\) (since \(3f(2) = -3\)) Substituting \(c = -3\) into the second condition: \[ a + b - 3 = -3 \implies a + b = 0 \implies b = -a \] Now substituting \(c = -3\) and \(b = -a\) into the third condition: \[ 4a + 2(-a) - 3 = -1 \implies 4a - 2a - 3 = -1 \implies 2a - 3 = -1 \implies 2a = 2 \implies a = 1 \] Then, substituting \(a = 1\) back to find \(b\): \[ b = -a = -1 \] Thus, we have: \[ f(x) = 1x^2 - 1x - 3 = x^2 - x - 3 \] ### Step 3: Rewrite the integral Now we need to evaluate: \[ \int \frac{x^2 - x - 3}{x^3 - 1} \, dx \] ### Step 4: Factor the denominator The denominator can be factored as: \[ x^3 - 1 = (x - 1)(x^2 + x + 1) \] ### Step 5: Perform partial fraction decomposition We can express: \[ \frac{x^2 - x - 3}{(x - 1)(x^2 + x + 1)} = \frac{A}{x - 1} + \frac{Bx + C}{x^2 + x + 1} \] Multiplying through by the denominator: \[ x^2 - x - 3 = A(x^2 + x + 1) + (Bx + C)(x - 1) \] Expanding the right-hand side: \[ x^2 - x - 3 = Ax^2 + Ax + A + Bx^2 - Bx + Cx - C \] Combine like terms: \[ x^2 - x - 3 = (A + B)x^2 + (A - B + C)x + (A - C) \] ### Step 6: Set up equations By equating coefficients, we have: 1. \(A + B = 1\) 2. \(A - B + C = -1\) 3. \(A - C = -3\) ### Step 7: Solve the system of equations From \(A + B = 1\), we can express \(B = 1 - A\). Substituting \(B\) into the second equation: \[ A - (1 - A) + C = -1 \implies 2A - 1 + C = -1 \implies 2A + C = 0 \implies C = -2A \] Now substitute \(C\) into the third equation: \[ A - (-2A) = -3 \implies A + 2A = -3 \implies 3A = -3 \implies A = -1 \] Then: \[ B = 1 - (-1) = 2, \quad C = -2(-1) = 2 \] ### Step 8: Write the partial fractions Thus, we have: \[ \frac{x^2 - x - 3}{(x - 1)(x^2 + x + 1)} = \frac{-1}{x - 1} + \frac{2x + 2}{x^2 + x + 1} \] ### Step 9: Integrate each term Now we can integrate: \[ \int \left( \frac{-1}{x - 1} + \frac{2x + 2}{x^2 + x + 1} \right) \, dx \] The first integral: \[ \int \frac{-1}{x - 1} \, dx = -\ln |x - 1| \] The second integral can be split: \[ \int \frac{2x + 2}{x^2 + x + 1} \, dx = 2 \int \frac{x}{x^2 + x + 1} \, dx + 2 \int \frac{1}{x^2 + x + 1} \, dx \] For the first part, use substitution \(u = x^2 + x + 1\): \[ du = (2x + 1)dx \implies dx = \frac{du}{2x + 1} \] The integral becomes: \[ \int \frac{2x}{u} \cdot \frac{du}{2x + 1} \] For the second part, complete the square for \(x^2 + x + 1\) and use the arctangent formula. ### Final Result Combining all parts, we get: \[ -\ln |x - 1| + \text{(result from the second integral)} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

If int(f(x))/(x^(3)-1)dx , where f(x) is a polynomial of degree 2 in x such that f(0)=f(1)=3f(2)=-3 and int(f(x))/(x^(3)-1)dx=-log|x-1|+log|x^(2)+x+1|+(m)/(sqrt(n))tan^(-1)((2x+1)/(sqrt(3)))+C . Then (2m+n) is

If int(f(x))/(x^(3)-1)dx=log|(x^(2)+x+1)/(x-1)|+(A)/(948sqrt(3))(tan^(-1)"(2x+1)/(sqrt(3)))+C , where f(x) is a polynomial of second degree in x such that f(0)=f(1)=3f(2)=3 , then A equals……..

If intf(x)dx=2 {f(x)}^(3)+C , then f (x) is

If g(x)=(f(x))/((x-a)(x-b)(x-c)) ,where f(x) is a polynomial of degree <3 , then intg(x)dx=|[1,a,f(a)log|x-a|],[1,b,f(b)log|x-b|],[1,c,f(c)log|x-c|]|-:|[1,a, a^2],[ 1,b,b^2],[ 1,c,c^2]|+k (dg(x))/(dx)=|[1,a,-f(a)(x-a)^(-2)],[1,b,-f(b)(x-b)^(-2)],[1,c,-f(c)(x-c)^(-2)]|:-|[1,a,a^2],[1,b,b^2],[1,c,c^2]|

Evaluate int_1^4 f(x)dx , where f(x)=|x-1|+|x-2|+|x-3|

Evaluate int_1^4 f(x)dx, where f(x)= |x-1|+|x-2|+|x-3|.

Let f(x) polynomial of degree 5 with leading coefficient unity such that f(1)=5, f(2)=4,f(3)=3,f(4)=2,f(5)=1, then f(6) is equal to

Let f(x) be a polynomial of degree 3 such that f(3)=1, f'(3)=-1, f''(3)=0, and f'''(3)=12. Then the value of f'(1) is

If f(x) is a polynomial of degree four with leading coefficient one satisfying f(1)=1, f(2)=2,f(3)=3 .then [(f(-1)+f(5))/(f(0)+f(4))]

Let f(x) be a polynomial satisfying f(0)=2 , f'(0)=3 and f''(x)=f(x) then f(4) equals