Home
Class 12
MATHS
If f(x) is the integral of (2 s...

If ` f(x) ` is the integral of ` (2 sin x - sin 2x )/(x ^ 3 ) ` , where ` x ne 0`, then find ` lim _ (x to 0) f' (x) ` .

A

0

B

1

C

2

D

`1//2`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise Numerical value Type of JEE Main|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

If f(x) is the integral of (2 sin x-sin 2 x)/(x^(3)), "where x" ne 0, "then find" underset(x rarr 0)("lim")f'(x) .

If f(x) = {:{(x/(|x|)" for "x != 0 ),(0 " for " x = 0 ):} , find Lim_(x to 0 ) f(x)

f(x) is the integral of (2sinx-sin2x)/(x^3),x!=0. Find lim_(x->0)f^(prime)(x)[w h e r ef^(prime)(x)=(df)/(dx)]

Statement-1 : lim_(x to 0-) ("sin"[x])/([x]) = "sin" [x] != 0 , Where [x] is the integral part of x. Statement-2 : lim_(x to 0+) ("sin"[x])/([x]) != 0 , where [x] the integral part of x.

If f(x)=x sin(1/x), x!=0 then (lim)_(x->0)f(x)=

Let f(x)=(sin x)/(x), x ne 0 . Then f(x) can be continous at x=0, if

f(x)=|{:(cos x, x, 1),(2sin x, x^(2), 2x),(tan x, x, 1):}|." Then find the vlue of lim_(x to 0) (f'(x))/(x).

Evaluate the following limits : Lim_(x to 0) (sin 2x)/x

If y sin (sin x) and (d^(2)y)/(dx^(2))+(dy)/(dx) tan x + f(x) = 0, then find f(x).

Let f(x) is a function continuous for all x in R except at x = 0 such that f'(x) lt 0, AA x in (-oo, 0) and f'(x) gt 0, AA x in (0, oo) . If lim_(x rarr 0^(+)) f(x) = 3, lim_(x rarr 0^(-)) f(x) = 4 and f(0) = 5 , then the image of the point (0, 1) about the line, y.lim_(x rarr 0) f(cos^(3) x - cos^(2) x) = x. lim_(x rarr 0) f(sin^(2) x - sin^(3) x) , is