Home
Class 12
MATHS
Let f:[0,(pi)/(2)]toR be continuous and ...

Let `f:[0,(pi)/(2)]toR` be continuous and satisfy `f'(x)=(1)/(1+cosx)` for all `x in(0,(pi)/(2))`. If f(0)=3 then `f((pi)/(2))` has the value equal to :

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the information given: 1. **Given Information**: - The function \( f: [0, \frac{\pi}{2}] \to \mathbb{R} \) is continuous. - The derivative \( f'(x) = \frac{1}{1 + \cos x} \) for all \( x \in (0, \frac{\pi}{2}) \). - The initial condition \( f(0) = 3 \). 2. **Finding the Function \( f(x) \)**: - To find \( f(x) \), we need to integrate \( f'(x) \): \[ f(x) = \int f'(x) \, dx = \int \frac{1}{1 + \cos x} \, dx. \] 3. **Simplifying the Integral**: - We can use the identity \( 1 + \cos x = 2 \cos^2 \left(\frac{x}{2}\right) \): \[ f(x) = \int \frac{1}{2 \cos^2 \left(\frac{x}{2}\right)} \, dx = \frac{1}{2} \int \sec^2 \left(\frac{x}{2}\right) \, dx. \] 4. **Integrating**: - The integral of \( \sec^2 u \) is \( \tan u \): \[ f(x) = \frac{1}{2} \cdot 2 \tan \left(\frac{x}{2}\right) + C = \tan \left(\frac{x}{2}\right) + C. \] 5. **Using the Initial Condition**: - We know \( f(0) = 3 \): \[ f(0) = \tan(0) + C = 0 + C = 3. \] - Therefore, \( C = 3 \). 6. **Final Expression for \( f(x) \)**: - Thus, we have: \[ f(x) = \tan \left(\frac{x}{2}\right) + 3. \] 7. **Finding \( f\left(\frac{\pi}{2}\right) \)**: - Now, we need to find \( f\left(\frac{\pi}{2}\right) \): \[ f\left(\frac{\pi}{2}\right) = \tan \left(\frac{\frac{\pi}{2}}{2}\right) + 3 = \tan \left(\frac{\pi}{4}\right) + 3. \] - Since \( \tan \left(\frac{\pi}{4}\right) = 1 \): \[ f\left(\frac{\pi}{2}\right) = 1 + 3 = 4. \] 8. **Conclusion**: - The value of \( f\left(\frac{\pi}{2}\right) \) is \( 4 \).
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|26 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(2-3cosx)/(sinx) , then f'((pi)/(4)) is equal to

Let f(x) = secx*f'(x), f(0) = 1, then f(pi/6) is equal to

If f'(x) = tan^(-1)(Sec x + tan x), x in (-pi/2 , pi/2) and f(0) = 0 then the value of f(1) is

For f(x) =x^(4) +|x|, let I_(1)= int _(0)^(pi)f(cos x) dx and I_(2)= int_(0)^(pi//2) f(sin x ) dx "then" (I_(1))/(I_(2)) has the value equal to

Let F(x) be the antiderivative of f(x)=3 cosx-2sinx whose graph passes through the point ((pi)/(2),1) . Then F((pi)/(3)) is equal to……..

If A={x:(pi)/(6) lt x lt (pi)/(3)} and f(x) =cosx-x(1+x), then f(A) is equal to :

Let f'(sin x)lt0 and f''(sin x) gt0 forall x in (0,(pi)/(2)) and g(x) =f(sinx)+f(cosx) which of the following is true?

Let f (x)= {{:((1- tan x)/(4x-pi), x ne (pi)/(4)),( lamda, x =(pi)/(4)):}, x in [0, (pi)/(2)), If f (x) is continuous in [0, (pi)/(2)) then lamda is equal to:

If f(x) is continuous on [0,2] , differentiable in (0,2) ,f(0)=2, f(2)=8 and f'(x) le 3 for all x in (0,2) , then find the value of f(1) .

If f(x)= int_(0^(sinx) cos^(-1)t dt +int_(0)^(cosx) sin^(-1)t dt, 0 lt x lt (pi)/(2) then f(pi//4) is equal to