Home
Class 12
MATHS
If int(dx)/(x+x^(2011))=f(x)+C(1) and in...

If `int(dx)/(x+x^(2011))=f(x)+C_(1) and int(x^(2009))/(1+x^(2010))dx=g(x)+C_(2)` (where `C_(1) and C_(2)` are constants of integration). Let h(x)=f(x)+g(x). If h(1)=0 then h(e) is equal to :

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the functions \( f(x) \) and \( g(x) \) from the given integrals, then combine them to find \( h(x) = f(x) + g(x) \), and finally evaluate \( h(e) \). ### Step 1: Find \( f(x) \) We start with the integral: \[ f(x) = \int \frac{dx}{x + x^{2011}} \] Factor out \( x^{2011} \): \[ = \int \frac{dx}{x(1 + \frac{1}{x^{2010}})} = \int \frac{dx}{x^{2011}(1 + \frac{1}{x^{2010}})} \] Let \( y = \frac{1}{x^{2010}} + 1 \). Then, differentiate: \[ dy = -\frac{2010}{x^{2011}} dx \implies dx = -\frac{1}{2010} x^{2011} dy \] Substituting this into the integral gives: \[ f(x) = \int -\frac{1}{2010} \frac{1}{y} dy = -\frac{1}{2010} \ln |y| + C_1 \] Substituting back for \( y \): \[ f(x) = -\frac{1}{2010} \ln \left(1 + \frac{1}{x^{2010}}\right) + C_1 \] ### Step 2: Find \( g(x) \) Now we evaluate the second integral: \[ g(x) = \int \frac{x^{2009}}{1 + x^{2010}} dx \] Let \( y = 1 + x^{2010} \). Then, differentiate: \[ dy = 2010 x^{2009} dx \implies dx = \frac{1}{2010 x^{2009}} dy \] Substituting this into the integral gives: \[ g(x) = \int \frac{1}{2010} \frac{1}{y} dy = \frac{1}{2010} \ln |y| + C_2 \] Substituting back for \( y \): \[ g(x) = \frac{1}{2010} \ln(1 + x^{2010}) + C_2 \] ### Step 3: Combine \( f(x) \) and \( g(x) \) Now we combine \( f(x) \) and \( g(x) \): \[ h(x) = f(x) + g(x) = -\frac{1}{2010} \ln \left(1 + \frac{1}{x^{2010}}\right) + \frac{1}{2010} \ln(1 + x^{2010}) + C \] Where \( C = C_1 + C_2 \). ### Step 4: Simplify \( h(x) \) Using properties of logarithms: \[ h(x) = \frac{1}{2010} \left( \ln(1 + x^{2010}) - \ln \left(1 + \frac{1}{x^{2010}}\right) \right) + C \] This can be simplified to: \[ h(x) = \frac{1}{2010} \ln \left( \frac{(1 + x^{2010})}{\left(1 + \frac{1}{x^{2010}}\right)} \right) + C \] ### Step 5: Evaluate \( h(1) \) Given \( h(1) = 0 \): \[ h(1) = \frac{1}{2010} \ln \left( \frac{(1 + 1^{2010})}{\left(1 + \frac{1}{1^{2010}}\right)} \right) + C = 0 \] This simplifies to: \[ \frac{1}{2010} \ln(2) + C = 0 \implies C = -\frac{1}{2010} \ln(2) \] ### Step 6: Evaluate \( h(e) \) Now we evaluate \( h(e) \): \[ h(e) = \frac{1}{2010} \ln \left( \frac{(1 + e^{2010})}{\left(1 + \frac{1}{e^{2010}}\right)} \right) - \frac{1}{2010} \ln(2) \] This simplifies to: \[ h(e) = \frac{1}{2010} \left( \ln(1 + e^{2010}) - \ln(2) \right) \] Using properties of logarithms: \[ h(e) = \frac{1}{2010} \ln \left( \frac{1 + e^{2010}}{2} \right) \] ### Final Result Thus, the value of \( h(e) \) is: \[ h(e) = \frac{1}{2010} \ln \left( \frac{1 + e^{2010}}{2} \right) \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|26 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

If int(dx)/(x^(2)+ax+1)=f(g(x))+c, then

If int x^(5)e^(-x^(2))dx = g(x)e^(-x^(2))+C , where C is a constant of integration, then g(-1) is equal to

If int (e^x-1)/(e^x+1)dx=f(x)+C, then f(x) is equal to

If intf(x)dx=3[f(x)]^(2)+c (where c is the constant of integration) and f(1)=(1)/(6) , then f(6pi) is equal to

The integral int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx is equal to (where C is a constant of integration)

If int (x+1)/(sqrt(2x-1))dx = f(x)sqrt(2x-1)+C , where C is a constant of integration, then f(x) is equal to

The value of int((x-4))/(x^2sqrt(x-2)) dx is equal to (where , C is the constant of integration )

Let I=int(cos^(3)x)/(1+sin^(2)x)dx , then I is equal to (where c is the constant of integration )

If the integral int(lnx)/(x^(3))dx=(f(x))/(4x^(2))+C , where f(e )=-3 and C is the constant of integration, then the value of f(e^(2)) is equal to

The integral I=int(sin(x^(2))+2x^(2)cos(x^(2)))dx (where =xh(x)+c , C is the constant of integration). If the range of H(x) is [a, b], then the value of a+2b is equal to