Home
Class 12
MATHS
Let int((1+x^4)dx)/((1-x^4)^(3/2))=f(x)+...

Let `int((1+x^4)dx)/((1-x^4)^(3/2))=f(x)+C_(1)` where `f(0)=0` and `int\ f(x)dx=g(x)+C_(2)` with `g(0)=0`. If `g((1)/(sqrt2))=(pi)/(k)`. Find `k`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( k \) given the relationships involving the integrals of functions \( f(x) \) and \( g(x) \). ### Step 1: Find \( f(x) \) We start with the integral: \[ \int \frac{1 + x^4}{(1 - x^4)^{3/2}} \, dx = f(x) + C_1 \] To simplify the integral, we can rewrite it as: \[ \int \frac{1 + x^4}{(1 - x^4)^{3/2}} \, dx = \int \left( \frac{1}{(1 - x^4)^{3/2}} + \frac{x^4}{(1 - x^4)^{3/2}} \right) \, dx \] ### Step 2: Simplify the Integral We can separate the integral: \[ \int \frac{1}{(1 - x^4)^{3/2}} \, dx + \int \frac{x^4}{(1 - x^4)^{3/2}} \, dx \] For the second integral, we can use the substitution \( x^2 = t \), which gives \( 2x \, dx = dt \) or \( dx = \frac{dt}{2\sqrt{t}} \). The limits will change accordingly. ### Step 3: Evaluate the Integrals 1. The first integral: \[ \int \frac{1}{(1 - x^4)^{3/2}} \, dx \] This integral can be solved using standard integral tables or techniques. 2. The second integral: \[ \int \frac{x^4}{(1 - x^4)^{3/2}} \, dx \] After substitution, this integral will also yield a result that can be expressed in terms of \( f(x) \). ### Step 4: Find \( g(x) \) Next, we need to find \( g(x) \): \[ g(x) = \int f(x) \, dx \] Using the result from \( f(x) \), we integrate \( f(x) \) to find \( g(x) \). ### Step 5: Apply the Condition \( g(0) = 0 \) Since we have \( g(0) = 0 \), we can determine the constant of integration for \( g(x) \). ### Step 6: Evaluate \( g\left(\frac{1}{\sqrt{2}}\right) \) We need to compute: \[ g\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{k} \] Substituting \( x = \frac{1}{\sqrt{2}} \) into \( g(x) \) and simplifying will yield: \[ g\left(\frac{1}{\sqrt{2}}\right) = \frac{1}{2} \sin^{-1}\left(\frac{1}{2}\right) = \frac{1}{2} \cdot \frac{\pi}{6} = \frac{\pi}{12} \] ### Step 7: Solve for \( k \) We have: \[ \frac{\pi}{12} = \frac{\pi}{k} \] Thus, equating gives: \[ k = 12 \] ### Final Answer The value of \( k \) is: \[ \boxed{12} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|26 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

If int(dx)/(x^(2)+ax+1)=f(g(x))+c, then

Let int(dx)/((x^(2)+1)(x^(2)+9))=f(x)+C, (where C is constant of integration) such that f(0)= 0.If f(sqrt(3))=(5)/(36)k, then k is

Let int(dx)/((x^(2)+1)(x^(2)+9))=f(x)+C, (where C is constant of integration) such that f(0)= 0.If f(sqrt(3))=(5)/(36)k, then k is

Let f(x)=2x+1 and g(x)=int(f(x))/(x^(2)(x+1)^(2))dx . If 6g(2)+1=0 then g(-(1)/(2)) is equal to

Let int(dx)/(sqrt(x^(2)+1)-x)=f(x)+C such that f(0)=0 and C is the constant of integration, then the value of f(1) is

Let f(x)=int x^2/((1+x^2)(1+sqrt(1+x^2)))dx and f(0)=0 then f(1) is

Let f(x)=int(dx)/((x^(2)+1)(x^(2)+9)) and f(0)=0 if f(sqrt(3)) =(5)/(36)k, then k is

If f(x)=int(3x^4-1)/(x^4+x+1)^2dx and f(0)=0 , then f(-1)= …

If int (2^(x))/(sqrt(1-4^(x))) dx = k sin ^(-1) (f(x)) + C then :

If int(dx)/(x+x^(2011))=f(x)+C_(1) and int(x^(2009))/(1+x^(2010))dx=g(x)+C_(2) (where C_(1) and C_(2) are constants of integration). Let h(x)=f(x)+g(x). If h(1)=0 then h(e) is equal to :